/beetect

FasterRCNN-FPN (ResNet50) to detect and track bees. Trained on manually curated images.

Primary LanguagePython

Beetect

Detecting and tracking honeybees

Watch the sample video ran on the trained model.

Recommended paths:

NVIDIA docker

follow: https://github.com/NVIDIA/nvidia-docker

Simple PyTorch GPU installation through NGC and Docker

follow: https://ngc.nvidia.com/catalog/containers/nvidia:pytorch

Steps for installing Horovod

https://github.com/horovod/horovod

Install Open MPI

follow: https://www.open-mpi.org/software/ompi/v4.0/

For OS X: https://stackoverflow.com/questions/42703861/how-to-use-mpi-on-mac-os-x brew install openmpi CFLAGS=-mmacosx-version-min=10.9 pip install horovod

Check that g++-4.9 or above is installed for PyTorch

For Linux: conda install -c anaconda gxx_linux-64

Install Horovod pip package

MacOS: CFLAGS=-mmacosx-version-min=10.9 pip install horovod

GPU: follow https://github.com/horovod/horovod/blob/master/docs/gpus.rst