This year's Neural Information Processing Systems (NIPS) 2017 conference held at Long Beach Convention Center, Long Beach California has been the biggest ever! Here's a list of resources and slides of all invited talks, tutorials and workshops.
Contributions are welcome. You can add links via pull requests or create an issue to lemme know something I missed or to start a discussion. If you know the speakers, please ask them to upload slides online!
Check out Deep Hunt - a curated monthly AI newsletter for this repo as a blog post and follow me on Twitter.
-
Powering the next 100 years
John Platt
Slides · Video · Code
-
Why AI Will Make it Possible to Reprogram the Human Genome
Brendan J Frey
-
The Trouble with Bias
Kate Crawford
-
The Unreasonable Effectiveness of Structure
Lise Getoor
Slides · Video
-
Deep Learning for Robotics
Pieter Abbeel
-
Learning State Representations
Yael Niv
-
On Bayesian Deep Learning and Deep Bayesian Learning
Yee Whye Teh
-
AlphaZero - Mastering Games without human knowledge
David Silver
-
Deep Learning: Practice and Trends
Nando de Freitas · Scott Reed · Oriol Vinyals
Slides · Video · Code
-
Reinforcement Learning with People
Emma Brunskill
Slides · Video · Code
-
A Primer on Optimal Transport
Marco Cuturi · Justin M Solomon
Slides · Video · Code
-
Deep Probabilistic Modelling with Gaussian Processes
Neil D Lawrence
Slides · Video · Code
-
Fairness in Machine Learning
Solon Barocas · Moritz Hardt
Slides · Video · Code
-
Statistical Relational Artificial Intelligence: Logic, Probability and Computation
Luc De Raedt · David Poole · Kristian Kersting · Sriraam Natarajan
Slides · Video · Code
-
Engineering and Reverse-Engineering Intelligence Using Probabilistic Programs, Program Induction, and Deep Learning
Josh Tenenbaum · Vikash K Mansinghka
Slides · Video · Code
-
Differentially Private Machine Learning: Theory, Algorithms and Applications
Kamalika Chaudhuri · Anand D Sarwate
Slides · Video · Code
-
Geometric Deep Learning on Graphs and Manifolds
Michael Bronstein · Joan Bruna · arthur szlam · Xavier Bresson · Yann LeCun
Slides · Video · Code
-
Aparna Lakshmiratan · Sarah Bird · Siddhartha Sen · Christopher Ré · Li Erran Li · Joseph Gonzalez · Daniel Crankshaw
-
A distributed execution engine for emerging AI applications
Ion Stoica
-
The Case for Learning Database Indexes
-
Virginia Smith
-
Accelerating Persistent Neural Networks at Datacenter Scale
Daniel Lo
-
DLVM: A modern compiler framework for neural network DSLs
Richard Wei · Lane Schwartz · Vikram Adve
-
Machine Learning for Systems and Systems for Machine Learning
Jeff Dean
-
Creating an Open and Flexible ecosystem for AI models with ONNX
Sarah Bird · Dmytro Dzhulgakov
-
NSML: A Machine Learning Platform That Enables You to Focus on Your Models
Nako Sung
-
DAWNBench: An End-to-End Deep Learning Benchmark and Competition
Cody Coleman
-
-
Bayesian machine learning: Quantifying uncertainty and robustness at scale
Tamara Broderick
Slides · Video · Code
-
Towards Communication-Centric Multi-Agent Deep Reinforcement Learning for Guarding a Territory
Aishwarya Unnikrishnan
Slides · Video · Code
-
Graph convolutional networks can encode three-dimensional genome architecture in deep learning models for genomics
Peyton Greenside
Slides · Video · Code
-
Machine Learning for Social Science
Hannah Wallach
Slides · Video · Code
-
Fairness Aware Recommendations
Palak Agarwal
Slides · Video · Code
-
Reinforcement Learning with a Corrupted Reward Channel
Victoria Krakivna
Slides · Video · Code
-
Improving health-care: challenges and opportunities for reinforcement learning
Joelle Pineau
Slides · Video · Code
-
Harnessing Adversarial Attacks on Deep Reinforement Learning for Improving Robustness
Zhenyi Tang
Slides · Video · Code
-
Time-Critical Machine Learning
Nina Mishra
Slides · Video · Code
-
A General Framework for Evaluating Callout Mechanisms in Repeated Auctions
Hoda Heidari
Slides · Video · Code
-
Engaging Experts: A Dirichlet Process Approach to Divergent Elicited Priors in Social Science
Sarah Bouchat
Slides · Video · Code
-
Representation Learning in Large Attributed Graphs
Nesreen K Ahmed
Slides · Video · Code