API reference | #eio Matrix chat | Dev meetings
Eio provides an effects-based direct-style IO stack for OCaml 5. For example, you can use Eio to read and write files, make network connections, or perform CPU-intensive calculations, running multiple operations at the same time. It aims to be easy to use, secure, well documented, and fast. A generic cross-platform API is implemented by optimised backends for different platforms. Eio replaces existing concurrency libraries such as Lwt (Eio and Lwt libraries can also be used together).
- Motivation
- Eio packages
- Getting OCaml 5.1
- Getting Eio
- Running Eio
- Testing with Mocks
- Fibers
- Tracing
- Cancellation
- Racing
- Switches
- Networking
- Design Note: Capabilities
- Buffered Reading and Parsing
- Buffered Writing
- Error Handling
- Filesystem Access
- Running processes
- Time
- Multicore Support
- Synchronisation Tools
- Design Note: Determinism
- Provider Interfaces
- Example Applications
- Integrations
- Best Practices
- Further Reading
The Unix
library provided with OCaml uses blocking IO operations, and is not well suited to concurrent programs such as network services or interactive applications.
For many years, the solution was to use libraries such as Lwt and Async, which provide a monadic interface.
These libraries allow writing code as if there were multiple threads of execution, each with their own stack, but the stacks are simulated using the heap.
OCaml 5 added support for "effects", removing the need for monadic code here. Using effects brings several advantages:
- It's faster, because no heap allocations are needed to simulate a stack.
- Concurrent code can be written in the same style as plain non-concurrent code.
- Because a real stack is used, backtraces from exceptions work as expected.
- Other features of the language (such as
try ... with ...
) can be used in concurrent code.
Additionally, modern operating systems provide high-performance alternatives to the old Unix select
call.
For example, Linux's io_uring system has applications write the operations they want to perform to a ring buffer,
which Linux handles asynchronously, and Eio can take advantage of this.
Please try porting your programs to use Eio and submit PRs or open issues when you find problems. Remember that you can always fall back to using Lwt libraries to provide missing features if necessary. See Awesome Multicore OCaml for links to work migrating other projects to Eio.
- Eio provides concurrency primitives (promises, etc.) and a high-level, cross-platform OS API.
- Eio_posix provides a cross-platform backend for these APIs for POSIX-type systems.
- Eio_linux provides a Linux io_uring backend for these APIs.
- Eio_windows is for use on Windows (incomplete - help wanted).
- Eio_main selects an appropriate backend (e.g.
eio_linux
oreio_posix
), depending on your platform. - Eio_js allows Eio code to run in the browser, using
js_of_ocaml
.
You'll need OCaml 5.1.0 or later. You can either install it yourself or build the included Dockerfile.
To install it yourself:
-
Make sure you have opam 2.1 or later (run
opam --version
to check). -
Use opam to install OCaml:
opam switch create 5.1.1
Install eio_main
(and utop
if you want to try it interactively):
opam install eio_main utop
If you want to install the latest unreleased development version of Eio, see HACKING.md.
Try out the examples interactively by running utop
in the shell.
First require
the eio_main
library. It's also convenient to open the Eio.Std
module, as follows. (The leftmost #
shown below is the Utop prompt, so enter the text after the
prompt and return after each line.)
# #require "eio_main";;
# open Eio.Std;;
This function writes a greeting to out
using Eio.Flow:
let main out =
Eio.Flow.copy_string "Hello, world!\n" out
We use Eio_main.run to run the event loop and call main
from there:
# Eio_main.run @@ fun env ->
main (Eio.Stdenv.stdout env);;
Hello, world!
- : unit = ()
Note that:
-
The
env
argument represents the standard environment of a Unix process, allowing it to interact with the outside world. A program will typically start by extracting fromenv
whatever things the program will need and then callingmain
with them. -
The type of the
main
function here tells us that this program only interacts via theout
flow. -
Eio_main.run
automatically calls the appropriate run function for your platform. For example, on Linux this will callEio_linux.run
. For non-portable code you can use the platform-specific library directly.
This example can also be built using dune; see examples/hello.
Because external resources are provided to main
as arguments, we can easily replace them with mocks for testing.
For example, instead of giving main
the real standard output, we can have it write to a buffer:
# Eio_main.run @@ fun _env ->
let buffer = Buffer.create 20 in
main (Eio.Flow.buffer_sink buffer);
traceln "Main would print %S" (Buffer.contents buffer);;
+Main would print "Hello, world!\n"
- : unit = ()
Eio.traceln provides convenient printf-style debugging, without requiring you to plumb stderr
through your code.
It uses the Format
module, so you can use the extended formatting directives here too.
The Eio_mock library provides some convenient pre-built mocks:
# #require "eio.mock";;
# Eio_main.run @@ fun _env ->
main (Eio_mock.Flow.make "mock-stdout");;
+mock-stdout: wrote "Hello, world!\n"
- : unit = ()
Here's an example running two threads of execution concurrently using Eio.Fiber:
let main _env =
Fiber.both
(fun () -> for x = 1 to 3 do traceln "x = %d" x; Fiber.yield () done)
(fun () -> for y = 1 to 3 do traceln "y = %d" y; Fiber.yield () done);;
# Eio_main.run main;;
+x = 1
+y = 1
+x = 2
+y = 2
+x = 3
+y = 3
- : unit = ()
The two fibers run on a single core, so only one can be running at a time.
Calling an operation that performs an effect (such as yield
) can switch to a different thread.
When OCaml's tracing is turned on, Eio writes events about many actions, such as creating fibers or resolving promises.
You can use eio-trace to capture a trace and display it in a window. For example, this is a trace of the counting example above:
dune build ./examples
eio-trace run -- ./_build/default/examples/both/main.exe
The upper horizontal bar is the initial fiber, and the brackets show Fiber.both
creating a second fiber.
The green segments show when each fiber is running.
Note that the output from traceln
appears in the trace as well as on the console.
In the eio-trace window, scrolling with the mouse or touchpad will zoom in or out of the diagram.
There are various third-party tools that can also consume this data (but may currently require patches to support the new system):
- Meio (Monitoring for Eio) provides an interactive console-based UI for exploring running fibers.
- Olly can save Perfetto traces and report statistics.
examples/trace shows how to consume the events manually.
Every fiber has a cancellation context.
If one of the Fiber.both
fibers fails, the other is cancelled:
# Eio_main.run @@ fun _env ->
Fiber.both
(fun () -> for x = 1 to 3 do traceln "x = %d" x; Fiber.yield () done)
(fun () -> failwith "Simulated error");;
+x = 1
Exception: Failure "Simulated error".
What happened here was:
Fiber.both
created a new cancellation context for the child fibers.- The first fiber (the lower one in the diagram) ran, printed
x = 1
and yielded. - The second fiber raised an exception.
Fiber.both
caught the exception and cancelled the context.- The first thread's
yield
raised aCancelled
exception there. - Once both threads had finished,
Fiber.both
re-raised the original exception.
There is a tree of cancellation contexts for each domain, and every fiber is in one context.
When an exception is raised, it propagates towards the root until handled, cancelling the other branches as it goes.
You should assume that any operation that can switch fibers can also raise a Cancelled
exception if an uncaught exception
reaches one of its ancestor cancellation contexts.
If you want to make an operation non-cancellable, wrap it with Cancel.protect
(this creates a new context that isn't cancelled with its parent).
Fiber.first
returns the result of the first fiber to finish, cancelling the other one:
# Eio_main.run @@ fun _env ->
let x =
Fiber.first
(fun () ->
traceln "first fiber delayed...";
Fiber.yield ();
traceln "delay over";
"a"
)
(fun () -> "b")
in
traceln "x = %S" x;;
+first fiber delayed...
+x = "b"
- : unit = ()
Note: using Fiber.first
to ensure that exactly one of two actions is performed is not reliable.
There is usually a possibility that both actions succeed at the same time (and one result is thrown away).
For example, if you ask Eio read from two sockets with io_uring
then the kernel may have already performed both reads by the time it tells Eio about the first one.
A switch is used to group fibers together, so they can be waited on together. This is a form of structured concurrency. For example:
# Eio_main.run @@ fun _env ->
Switch.run (fun sw ->
Fiber.fork ~sw
(fun () -> for i = 1 to 3 do traceln "i = %d" i; Fiber.yield () done);
traceln "First thread forked";
Fiber.fork ~sw
(fun () -> for j = 1 to 3 do traceln "j = %d" j; Fiber.yield () done);
traceln "Second thread forked; top-level code is finished"
);
traceln "Switch is finished";;
+i = 1
+First thread forked
+j = 1
+Second thread forked; top-level code is finished
+i = 2
+j = 2
+i = 3
+j = 3
+Switch is finished
- : unit = ()
Switch.run fn
creates a new switch sw
and runs fn sw
.
fn
may spawn new fibers and attach them to the switch.
It may also attach other resources such as open file handles.
Switch.run
waits until fn
and all other attached fibers have finished, and then
releases any attached resources (e.g. closing all attached file handles).
If you call a function without giving it access to a switch,
then when the function returns you can be sure that any fibers it spawned have finished,
and any files it opened have been closed.
This works because Eio does not provide e.g. a way to open a file without attaching it to a switch.
If a function doesn't have a switch and wants to open a file, it must use Switch.run
to create one.
But then the function can't return until Switch.run
does, at which point the file is closed.
So, a Switch.run
puts a bound on the lifetime of things created within it,
leading to clearer code and avoiding resource leaks.
The Fiber.fork
call above creates a new fiber that continues running after fork
returns,
so it needs to take a switch argument.
Every switch also creates a new cancellation context.
You can use Switch.fail
to mark the switch as failed and cancel all fibers within it.
The exception (or exceptions) passed to fail
will be raised by run
when the fibers have exited.
Eio provides an API for networking. Here is a server connection handler that handles an incoming connection by sending the client a message:
let handle_client flow _addr =
traceln "Server: got connection from client";
Eio.Flow.copy_string "Hello from server" flow
We can test it using a mock flow:
# Eio_mock.Backend.run @@ fun () ->
let flow = Eio_mock.Flow.make "flow" in
let addr = `Tcp (Eio.Net.Ipaddr.V4.loopback, 37568) in
handle_client flow addr;;
+Server: got connection from client
+flow: wrote "Hello from server"
- : unit = ()
Note: Eio_mock.Backend.run
can be used instead of Eio_main.run
for tests that don't access the outside environment at all.
It doesn't support multiple domains, but this allows it to detect deadlocks automatically
(a multi-domain loop has to assume it might get an event from another domain, and so must keep waiting).
Here is a client that connects to address addr
using network net
and reads a message:
let run_client ~net ~addr =
Switch.run ~name:"client" @@ fun sw ->
traceln "Client: connecting to server";
let flow = Eio.Net.connect ~sw net addr in
(* Read all data until end-of-stream (shutdown): *)
traceln "Client: received %S" (Eio.Flow.read_all flow)
Note: the flow
is attached to sw
and will be closed automatically when it finishes.
We also named the switch here; this will appear in the trace output (see below).
This can also be tested on its own using a mock network:
# Eio_mock.Backend.run @@ fun () ->
let net = Eio_mock.Net.make "mocknet" in
let flow = Eio_mock.Flow.make "flow" in
Eio_mock.Net.on_connect net [`Return flow];
Eio_mock.Flow.on_read flow [
`Return "(packet 1)";
`Yield_then (`Return "(packet 2)");
`Raise End_of_file;
];
let addr = `Tcp (Eio.Net.Ipaddr.V4.loopback, 8080) in
run_client ~net ~addr;;
+Client: connecting to server
+mocknet: connect to tcp:127.0.0.1:8080
+flow: read "(packet 1)"
+flow: read "(packet 2)"
+Client: received "(packet 1)(packet 2)"
+flow: closed
- : unit = ()
Eio.Net.run_server
runs a loop accepting clients and handling them (concurrently):
let run_server socket =
Eio.Net.run_server socket handle_client
~on_error:(traceln "Error handling connection: %a" Fmt.exn)
Note: when handle_client
finishes, run_server
closes the flow automatically.
We can now run the client and server together using the real network (in a single process):
let main ~net ~addr =
Switch.run ~name:"main" @@ fun sw ->
let server = Eio.Net.listen net ~sw ~reuse_addr:true ~backlog:5 addr in
Fiber.fork_daemon ~sw (fun () -> run_server server);
run_client ~net ~addr
Fiber.fork_daemon
creates a new fiber and then cancels it when the switch finishes.
We need that here because otherwise the server would keep waiting for new connections and
the test would never finish.
# Eio_main.run @@ fun env ->
main
~net:(Eio.Stdenv.net env)
~addr:(`Tcp (Eio.Net.Ipaddr.V4.loopback, 8080));;
+Client: connecting to server
+Server: got connection from client
+Client: received "Hello from server"
- : unit = ()
See examples/net for a more complete example.
Eio follows the principles of capability-based security. The key idea here is that the lambda calculus already contains a perfectly good security system: a function can only access things that are in its scope. If we can avoid breaking this model (for example, by adding global variables to our language) then we can reason about the security properties of code quite easily.
Consider the network example in the previous section. Imagine this is a large program and we want to know:
- Does this program modify the filesystem?
- Does this program send telemetry data over the network?
In a capability-safe language, we don't have to read the entire code-base to find the answers:
-
All authority starts at the (privileged)
Eio_main.run
function with theenv
parameter, so we must check this code. -
Only
env
's network access is used, so we know this program doesn't access the filesystem, answering question 1 immediately. -
To check whether telemetry is sent, we need to follow the
net
authority as it is passed tomain
. -
main
usesnet
to open a listening socket on the loopback interface, which it passes torun_server
.run_server
does not get the fullnet
access, so we probably don't need to read that code; however, we might want to check whether we granted other parties access to this port on our loopback network. -
run_client
does getnet
, so we do need to read that. We could make that code easier to audit by passing it(fun () -> Eio.Net.connect net addr)
instead ofnet
. Then we could see thatrun_client
could only connect to our loopback address.
Since OCaml is not a capability language, code can ignore Eio and use the non-capability APIs directly. However, it still makes non-malicious code easier to understand and test, and may allow for an extension to the language in the future.
The Lambda Capabilities blog post provides a more detailed introduction to capabilities, written for functional programmers.
Reading from an Eio flow directly may give you more or less data than you wanted. For example, if you want to read a line of text from a TCP stream, the flow will tend to give you the data in packet-sized chunks, not lines. To solve this, you can wrap the flow with a buffer and read from that.
Here's a simple command-line interface that reads stdin
one line at a time:
let cli ~stdin ~stdout =
let buf = Eio.Buf_read.of_flow stdin ~initial_size:100 ~max_size:1_000_000 in
while true do
let line = Eio.Buf_read.line buf in
traceln "> %s" line;
match line with
| "h" | "help" -> Eio.Flow.copy_string "It's just an example\n" stdout
| x -> Eio.Flow.copy_string (Fmt.str "Unknown command %S\n" x) stdout
done
Let's try it with some test data (you could use the real stdin if you prefer):
# Eio_main.run @@ fun env ->
cli
~stdin:(Eio.Flow.string_source "help\nexit\nquit\nbye\nstop\n")
~stdout:(Eio.Stdenv.stdout env);;
+> help
It's just an example
+> exit
Unknown command "exit"
+> quit
Unknown command "quit"
+> bye
Unknown command "bye"
+> stop
Unknown command "stop"
Exception: End_of_file.
Buf_read.of_flow
allocates an internal buffer (with the given initial_size
).
When you try to read a line from it, it will take a whole line from the buffer if possible.
If not, it will ask the underlying flow for the next chunk of data, until it has enough.
For high performance applications, you should use a larger initial buffer so that fewer reads on the underlying flow are needed.
If the user enters a line that doesn't fit in the buffer then the buffer will be enlarged as needed.
However, it will raise an exception if the buffer would need to grow above max_size
.
This is useful when handling untrusted input, since otherwise when you try to read one line an
attacker could just keep sending e.g. 'x' characters until your service ran out of memory and crashed.
As well as calling individual parsers (like line
) directly,
you can also build larger parsers from smaller ones.
For example:
open Eio.Buf_read.Syntax
type message = { src : string; body : string }
let message =
let+ src = Eio.Buf_read.(string "FROM:" *> line)
and+ body = Eio.Buf_read.take_all in
{ src; body }
# Eio_main.run @@ fun _ ->
let flow = Eio.Flow.string_source "FROM:Alice\nHello!\n" in
match Eio.Buf_read.parse message flow ~max_size:1024 with
| Ok { src; body } -> traceln "%s sent %S" src body
| Error (`Msg err) -> traceln "Parse failed: %s" err;;
+Alice sent "Hello!\n"
- : unit = ()
For performance, it's often useful to batch up writes and send them all in one go. For example, consider sending an HTTP response without buffering:
let send_response socket =
Eio.Flow.copy_string "HTTP/1.1 200 OK\r\n" socket;
Eio.Flow.copy_string "\r\n" socket;
Fiber.yield (); (* Simulate delayed generation of body *)
Eio.Flow.copy_string "Body data" socket
# Eio_main.run @@ fun _ ->
send_response (Eio_mock.Flow.make "socket");;
+socket: wrote "HTTP/1.1 200 OK\r\n"
+socket: wrote "\r\n"
+socket: wrote "Body data"
- : unit = ()
The socket received three writes, perhaps sending three separate packets over the network. We can wrap a flow with Eio.Buf_write to avoid this:
module Write = Eio.Buf_write
let send_response socket =
Write.with_flow socket @@ fun w ->
Write.string w "HTTP/1.1 200 OK\r\n";
Write.string w "\r\n";
Fiber.yield (); (* Simulate delayed generation of body *)
Write.string w "Body data"
# Eio_main.run @@ fun _ ->
send_response (Eio_mock.Flow.make "socket");;
+socket: wrote "HTTP/1.1 200 OK\r\n"
+ "\r\n"
+socket: wrote "Body data"
- : unit = ()
Now the first two writes were combined and sent together.
Errors interacting with the outside world are indicated by the Eio.Io (err, context)
exception.
This is roughly equivalent to the Unix.Unix_error
exception from the OCaml standard library.
The err
field describes the error using nested error codes,
allowing you to match on either specific errors or whole classes of errors at once.
For example:
let test r =
try Eio.Buf_read.line r
with
| Eio.Io (Eio.Net.E Connection_reset Eio_unix.Unix_error _, _) -> "Unix connection reset"
| Eio.Io (Eio.Net.E Connection_reset _, _) -> "Connection reset"
| Eio.Io (Eio.Net.E _, _) -> "Some network error"
| Eio.Io _ -> "Some I/O error"
For portable code, you will want to avoid matching backend-specific errors, so you would avoid the first case.
The Eio.Io
type is extensible, so libraries can also add additional top-level error types if needed.
Io
errors also allow adding extra context information to the error.
For example, this HTTP GET function adds the URL to any IO error:
let get ~net ~host ~path =
try
Eio.Net.with_tcp_connect net ~host ~service:"http" @@ fun _flow ->
"..."
with Eio.Io _ as ex ->
let bt = Printexc.get_raw_backtrace () in
Eio.Exn.reraise_with_context ex bt "fetching http://%s/%s" host path;;
If we test it using a mock network that returns a timeout,
we get a useful error message telling us the IP address and port of the failed attempt,
extended with the hostname we used to get that,
and then extended again by our get
function with the full URL:
# Eio_mock.Backend.run @@ fun () ->
let net = Eio_mock.Net.make "mocknet" in
Eio_mock.Net.on_getaddrinfo net [`Return [`Tcp (Eio.Net.Ipaddr.V4.loopback, 80)]];
Eio_mock.Net.on_connect net [`Raise (Eio.Net.err (Connection_failure Timeout))];
get ~net ~host:"example.com" ~path:"index.html";;
+mocknet: getaddrinfo ~service:http example.com
+mocknet: connect to tcp:127.0.0.1:80
Exception:
Eio.Io Net Connection_failure Timeout,
connecting to tcp:127.0.0.1:80,
connecting to "example.com":http,
fetching http://example.com/index.html
To get more detailed information, you can enable backtraces by setting OCAMLRUNPARAM=b
or by calling Printexc.record_backtrace true
, as usual.
When writing MDX tests that depend on getting the exact error output, it can be annoying to have the full backend-specific error displayed:
# Eio_main.run @@ fun env ->
let net = Eio.Stdenv.net env in
Switch.run @@ fun sw ->
Eio.Net.connect ~sw net (`Tcp (Eio.Net.Ipaddr.V4.loopback, 1234));;
Exception:
Eio.Io Net Connection_failure Refused Unix_error (Connection refused, "connect", ""),
connecting to tcp:127.0.0.1:1234
If we ran this using another backend, the Unix_error
part might change.
To avoid this problem, you can use Eio.Exn.Backend.show
to hide the backend-specific part of errors:
# Eio.Exn.Backend.show := false;;
- : unit = ()
# Eio_main.run @@ fun env ->
let net = Eio.Stdenv.net env in
Switch.run @@ fun sw ->
Eio.Net.connect ~sw net (`Tcp (Eio.Net.Ipaddr.V4.loopback, 1234));;
Exception:
Eio.Io Net Connection_failure Refused _,
connecting to tcp:127.0.0.1:1234
We'll leave it like that for the rest of this file, so the examples can be tested automatically by MDX.
Access to the filesystem is performed using Eio.Path.
An 'a Path.t
is a pair of a capability to a base directory (of type 'a
) and a string path relative to that.
To append to the string part, it's convenient to use the /
operator:
let ( / ) = Eio.Path.( / )
env
provides two initial paths:
cwd
restricts access to files beneath the current working directory.fs
provides full access (just like OCaml's stdlib).
You can save a whole file using Path.save
:
# Eio_main.run @@ fun env ->
let path = Eio.Stdenv.cwd env / "test.txt" in
traceln "Saving to %a" Eio.Path.pp path;
Eio.Path.save ~create:(`Exclusive 0o600) path "line one\nline two\n";;
+Saving to <cwd:test.txt>
- : unit = ()
For more control, use Path.open_out
(or with_open_out
) to get a flow.
To load a file, you can use load
to read the whole thing into a string,
Path.open_in
(or with_open_in
) to get a flow, or Path.with_lines
to stream
the lines (a convenience function that uses Buf_read.lines
):
# Eio_main.run @@ fun env ->
let path = Eio.Stdenv.cwd env / "test.txt" in
Eio.Path.with_lines path (fun lines ->
Seq.iter (traceln "Processing %S") lines
);;
+Processing "line one"
+Processing "line two"
- : unit = ()
Access to cwd
only grants access to that sub-tree:
let try_save path data =
match Eio.Path.save ~create:(`Exclusive 0o600) path data with
| () -> traceln "save %a : ok" Eio.Path.pp path
| exception ex -> traceln "%a" Eio.Exn.pp ex
let try_mkdir path =
match Eio.Path.mkdir path ~perm:0o700 with
| () -> traceln "mkdir %a : ok" Eio.Path.pp path
| exception ex -> traceln "%a" Eio.Exn.pp ex
# Eio_main.run @@ fun env ->
let cwd = Eio.Stdenv.cwd env in
try_mkdir (cwd / "dir1");
try_mkdir (cwd / "../dir2");
try_mkdir (cwd / "/tmp/dir3");;
+mkdir <cwd:dir1> : ok
+Eio.Io Fs Permission_denied _, creating directory <cwd:../dir2>
+Eio.Io Fs Permission_denied _, creating directory <cwd:/tmp/dir3>
- : unit = ()
The checks also apply to following symlinks:
# Unix.symlink "dir1" "link-to-dir1";
Unix.symlink (Filename.get_temp_dir_name ()) "link-to-tmp";;
- : unit = ()
# Eio_main.run @@ fun env ->
let cwd = Eio.Stdenv.cwd env in
try_save (cwd / "dir1/file1") "A";
try_save (cwd / "link-to-dir1/file2") "B";
try_save (cwd / "link-to-tmp/file3") "C";;
+save <cwd:dir1/file1> : ok
+save <cwd:link-to-dir1/file2> : ok
+Eio.Io Fs Permission_denied _, opening <cwd:link-to-tmp/file3>
- : unit = ()
You can use open_dir
(or with_open_dir
) to create a restricted capability to a subdirectory:
# Eio_main.run @@ fun env ->
let cwd = Eio.Stdenv.cwd env in
Eio.Path.with_open_dir (cwd / "dir1") @@ fun dir1 ->
try_save (dir1 / "file4") "D";
try_save (dir1 / "../file5") "E";;
+save <dir1:file4> : ok
+Eio.Io Fs Permission_denied _, opening <dir1:../file5>
- : unit = ()
You only need to use open_dir
if you want to create a new sandboxed environment.
You can use a single base directory object to access all paths beneath it,
and this allows following symlinks within that subtree.
A program that operates on the current directory will probably want to use cwd
,
whereas a program that accepts a path from the user will probably want to use fs
,
perhaps with open_dir
to constrain all access to be within that directory.
On systems that provide the cap_enter system call, you can ask the OS to reject accesses
that don't use capabilities.
examples/capsicum/ contains an example that
restricts itself to using a directory passed on the command-line, and then
tries reading /etc/passwd
via the stdlib.
Running on FreeBSD, you should see:
mkdir /tmp/cap
dune exec -- ./examples/capsicum/main.exe /tmp/cap
+Opened directory <fs:/tmp/cap>
+Capsicum mode enabled
+Using the file-system via the directory resource works:
+Writing <cap:capsicum-test.txt>...
+Read: "A test file"
+Bypassing Eio and accessing other resources should fail in Capsicum mode:
Fatal error: exception Sys_error("/etc/passwd: Not permitted in capability mode")
Spawning a child process can be done using the Eio.Process module:
# Eio_main.run @@ fun env ->
let proc_mgr = Eio.Stdenv.process_mgr env in
Eio.Process.run proc_mgr ["echo"; "hello"];;
hello
- : unit = ()
There are various optional arguments for setting the process's current directory or connecting up the standard streams.
For example, we can use tr
to convert some text to upper-case:
# Eio_main.run @@ fun env ->
let proc_mgr = Eio.Stdenv.process_mgr env in
Eio.Process.run proc_mgr ["tr"; "a-z"; "A-Z"]
~stdin:(Eio.Flow.string_source "One two three\n");;
ONE TWO THREE
- : unit = ()
If you want to capture the output of a process, you can provide a suitable Eio.Flow.sink
as the stdout
argument,
or use the parse_out
convenience wrapper:
# Eio_main.run @@ fun env ->
let proc_mgr = Eio.Stdenv.process_mgr env in
Eio.Process.parse_out proc_mgr Eio.Buf_read.line ["echo"; "hello"];;
- : string = "hello"
All process functions either return the exit status or check that it was zero (success):
# Eio_main.run @@ fun env ->
let proc_mgr = Eio.Stdenv.process_mgr env in
Eio.Process.parse_out proc_mgr Eio.Buf_read.take_all ["sh"; "-c"; "exit 3"];;
Exception:
Eio.Io Process Child_error Exited (code 3),
running command: sh -c "exit 3"
Process.spawn
and Process.await
give more control over the process's lifetime
and exit status, and Eio_unix.Process
gives more control over passing file
descriptors (on systems that support them).
The standard environment provides a clock with the usual POSIX time:
# Eio_main.run @@ fun env ->
let clock = Eio.Stdenv.clock env in
traceln "The time is now %f" (Eio.Time.now clock);;
+The time is now 1623940778.270336
- : unit = ()
The mock backend provides a mock clock that advances automatically where there is nothing left to do:
# Eio_mock.Backend.run_full @@ fun env ->
let clock = Eio.Stdenv.clock env in
traceln "Sleeping for five seconds...";
Eio.Time.sleep clock 5.0;
traceln "Resumed";;
+Sleeping for five seconds...
+mock time is now 5
+Resumed
- : unit = ()
Note: You could also just use Eio_unix.sleep 5.0
if you don't want to pass a clock around.
This is especially useful if you need to insert a delay for some quick debugging.
OCaml allows a program to create multiple domains in which to run code, allowing multiple CPUs to be used at once. Fibers are scheduled cooperatively within a single domain, but fibers in different domains run in parallel. This is useful to perform CPU-intensive operations quickly (though extra care needs to be taken when using multiple cores; see the Multicore Guide for details).
Eio.Domain_manager provides a basic API for spawning domains. For example, let's say we have a CPU intensive task:
let sum_to n =
traceln "Starting CPU-intensive task...";
let total = ref 0 in
for i = 1 to n do
total := !total + i
done;
traceln "Finished";
!total
We can use the domain manager to run this in a separate domain:
let main ~domain_mgr =
let test n =
traceln "sum 1..%d = %d" n
(Eio.Domain_manager.run domain_mgr
(fun () -> sum_to n))
in
Fiber.both
(fun () -> test 100000)
(fun () -> test 50000)
# Eio_main.run @@ fun env ->
main ~domain_mgr:(Eio.Stdenv.domain_mgr env);;
+Starting CPU-intensive task...
+Starting CPU-intensive task...
+Finished
+sum 1..50000 = 1250025000
+Finished
+sum 1..100000 = 5000050000
- : unit = ()
Notes:
traceln
can be used safely from multiple domains. It takes a mutex, so that trace lines are output atomically.- The exact
traceln
output of this example is non-deterministic, because the OS is free to schedule domains as it likes. - You must ensure that the function passed to
run
doesn't have access to any non-threadsafe values. The type system does not check this. Domain_manager.run
waits for the domain to finish, but it allows other fibers to run while waiting. This is why we useFiber.both
to create multiple fibers.
An Eio.Executor_pool distributes jobs among a pool of domain workers. Domains are reused and can execute multiple jobs concurrently.
Each domain worker starts new jobs until the total ~weight
of its running jobs reaches 1.0
.
The ~weight
represents the expected proportion of a CPU core that the job will take up.
Jobs are queued up if they cannot be started immediately due to all domain workers being busy (>= 1.0
).
This is the recommended way of leveraging OCaml 5's multicore capabilities.
Usually you will only want one pool for an entire application, so the pool is typically created when the application starts:
let () =
Eio_main.run @@ fun env ->
Switch.run @@ fun sw ->
let pool =
Eio.Executor_pool.create
~sw (Eio.Stdenv.domain_mgr env)
~domain_count:4
in
main ~pool
The pool starts its domain workers immediately upon creation.
The pool will not block our switch sw
from completing;
when the switch finishes, all domain workers and running jobs are cancelled.
~domain_count
is the number of domain workers to create.
The total number of domains should not exceed Domain.recommended_domain_count
or the number of cores on your system.
We can run the previous example using an Executor Pool like this:
let main ~domain_mgr =
Switch.run @@ fun sw ->
let pool =
Eio.Executor_pool.create ~sw domain_mgr ~domain_count:4
in
let test n =
traceln "sum 1..%d = %d" n
(Eio.Executor_pool.submit_exn pool ~weight:1.0
(fun () -> sum_to n))
in
Fiber.both
(fun () -> test 100000)
(fun () -> test 50000)
# Eio_main.run @@ fun env ->
main ~domain_mgr:(Eio.Stdenv.domain_mgr env);;
+Starting CPU-intensive task...
+Starting CPU-intensive task...
+Finished
+sum 1..50000 = 1250025000
+Finished
+sum 1..100000 = 5000050000
- : unit = ()
~weight
is the anticipated proportion of a CPU core used by the job.
In other words, the fraction of time actively spent executing OCaml code, not just waiting for I/O or system calls.
In the above code snippet we use ~weight:1.0
because the job is entirely CPU-bound: it never waits for I/O or other syscalls.
~weight
must be >= 0.0
and <= 1.0
.
Example: given an IO-bound job that averages 2% of one CPU core, pass ~weight:0.02
.
Each domain worker starts new jobs until the total ~weight
of its running jobs reaches 1.0
.
Eio provides several sub-modules for communicating between fibers, and these work even when the fibers are running in different domains.
Promises are a simple and reliable way to communicate between fibers. One fiber can wait for a promise and another can resolve it:
# Eio_main.run @@ fun _ ->
let promise, resolver = Promise.create () in
Fiber.both
(fun () ->
traceln "Waiting for promise...";
let x = Promise.await promise in
traceln "x = %d" x
)
(fun () ->
traceln "Resolving promise";
Promise.resolve resolver 42
);;
+Waiting for promise...
+Resolving promise
+x = 42
- : unit = ()
A promise is initially "unresolved", and can only be resolved once. Awaiting a promise that is already resolved immediately returns the resolved value.
Promises are one of the easiest tools to use safely: it doesn't matter whether you wait on a promise before or after it is resolved, and multiple fibers can wait for the same promise and will get the same result. Promises are thread-safe; you can wait for a promise in one domain and resolve it in another.
Promises are also useful for integrating with callback-based libraries. For example:
let wrap fn x =
let promise, resolver = Promise.create () in
fn x
~on_success:(Promise.resolve_ok resolver)
~on_error:(Promise.resolve_error resolver);
Promise.await_exn promise
Here's an example using promises to cache lookups, with the twist that another user might ask the cache for the value while it's still adding it. We don't want to start a second fetch in that case, so instead we just store promises in the cache:
let make_cache fn =
let tbl = Hashtbl.create 10 in
fun key ->
match Hashtbl.find_opt tbl key with
| Some p -> Promise.await_exn p
| None ->
let p, r = Promise.create () in
Hashtbl.add tbl key p;
match fn key with
| v -> Promise.resolve_ok r v; v
| exception ex -> Promise.resolve_error r ex; raise ex
Notice that we store the new promise in the cache immediately, without doing anything that might switch to another fiber.
We can use it like this:
# let fetch url =
traceln "Fetching %S..." url;
Fiber.yield (); (* Simulate work... *)
traceln "Got response for %S" url;
if url = "http://example.com" then "<h1>Example.com</h1>"
else failwith "404 Not Found";;
val fetch : string -> string = <fun>
# Eio_main.run @@ fun _ ->
let c = make_cache fetch in
let test url =
traceln "Requesting %s..." url;
match c url with
| page -> traceln "%s -> %s" url page
| exception ex -> traceln "%s -> %a" url Fmt.exn ex
in
Fiber.List.iter test [
"http://example.com";
"http://example.com";
"http://bad.com";
"http://bad.com";
];;
+Requesting http://example.com...
+Fetching "http://example.com"...
+Requesting http://example.com...
+Requesting http://bad.com...
+Fetching "http://bad.com"...
+Requesting http://bad.com...
+Got response for "http://example.com"
+http://example.com -> <h1>Example.com</h1>
+Got response for "http://bad.com"
+http://bad.com -> Failure("404 Not Found")
+http://example.com -> <h1>Example.com</h1>
+http://bad.com -> Failure("404 Not Found")
- : unit = ()
Fiber.List.iter
is like List.iter
but doesn't wait for each job to finish before starting the next.
Notice that we made four requests, but only started two download operations.
This version of the cache remembers failed lookups too. You could modify it to remove the entry on failure, so that all clients currently waiting still fail, but any future client asking for the failed resource will trigger a new download.
This cache is not thread-safe. You will need to add a mutex if you want to share it between domains.
A stream is a bounded queue. Reading from an empty stream waits until an item is available. Writing to a full stream waits for space.
# Eio_main.run @@ fun _ ->
let stream = Eio.Stream.create 2 in
Fiber.both
(fun () ->
for i = 1 to 5 do
traceln "Adding %d..." i;
Eio.Stream.add stream i
done
)
(fun () ->
for i = 1 to 5 do
let x = Eio.Stream.take stream in
traceln "Got %d" x;
Fiber.yield ()
done
);;
+Adding 1...
+Adding 2...
+Adding 3...
+Got 1
+Adding 4...
+Got 2
+Adding 5...
+Got 3
+Got 4
+Got 5
- : unit = ()
Here, we create a stream with a maximum size of 2 items. The first fiber added 1 and 2 to the stream, but had to wait before it could insert 3.
A stream with a capacity of 1 acts like a mailbox. A stream with a capacity of 0 will wait until both the sender and receiver are ready.
Streams are thread-safe and can be used to communicate between domains.
A useful pattern is a pool of workers reading from a stream of work items. Client fibers submit items to a stream and workers process the items:
let handle_job request =
Fiber.yield (); (* (simulated work) *)
Printf.sprintf "Processed:%d" request
let rec run_worker id stream =
let request, reply = Eio.Stream.take stream in
traceln "Worker %s processing request %d" id request;
Promise.resolve reply (handle_job request);
run_worker id stream
let submit stream request =
let reply, resolve_reply = Promise.create () in
Eio.Stream.add stream (request, resolve_reply);
Promise.await reply
Each item in the stream is a request payload and a resolver for the reply promise.
# Eio_main.run @@ fun env ->
let domain_mgr = Eio.Stdenv.domain_mgr env in
Switch.run @@ fun sw ->
let stream = Eio.Stream.create 0 in
let spawn_worker name =
Fiber.fork_daemon ~sw (fun () ->
Eio.Domain_manager.run domain_mgr (fun () ->
traceln "Worker %s ready" name;
run_worker name stream
)
)
in
spawn_worker "A";
spawn_worker "B";
Switch.run (fun sw ->
for i = 1 to 3 do
Fiber.fork ~sw (fun () ->
traceln "Client %d submitting job..." i;
traceln "Client %d got %s" i (submit stream i)
);
Fiber.yield ()
done
);;
+Worker A ready
+Worker B ready
+Client 1 submitting job...
+Worker A processing request 1
+Client 2 submitting job...
+Worker B processing request 2
+Client 3 submitting job...
+Client 1 got Processed:1
+Worker A processing request 3
+Client 2 got Processed:2
+Client 3 got Processed:3
- : unit = ()
We use a zero-capacity stream here, which means that the Stream.add
doesn't succeed until a worker accepts the job.
This is a good choice for a worker pool because it means that if the client fiber gets cancelled while waiting for a worker
then the job will never be run. It's also more efficient, as 0-capacity streams use a lock-free algorithm that is faster
when there are multiple domains.
Note that, while the stream itself is 0-capacity, clients still queue up waiting to use it.
In the code above, any exception raised while processing a job will exit the whole program. We might prefer to handle exceptions by sending them back to the client and continuing:
let rec run_worker id stream =
let request, reply = Eio.Stream.take stream in
traceln "Worker %s processing request %d" id request;
begin match handle_job request with
| result -> Promise.resolve_ok reply result
| exception ex -> Promise.resolve_error reply ex; Fiber.check ()
end;
run_worker id stream
The Fiber.check ()
checks whether the worker itself has been cancelled, and exits the loop if so.
It's not actually necessary in this case,
because if we continue instead then the following Stream.take
will perform the check anyway.
Note: in a real system, you would probably use Eio.Executor_pool for this rather than making your own pool.
Eio also provides Mutex
and Semaphore
sub-modules.
Each of these corresponds to the module with the same name in the OCaml standard library,
but allows other fibers to run while waiting instead of blocking the whole domain.
They are all safe to use in parallel from multiple domains.
- Eio.Mutex provides mutual exclusion, so that only one fiber can access a resource at a time.
- Eio.Semaphore generalises this to allow up to n fibers to access a resource at once.
For example, if we allow loading and saving data in a file there could be a problem if we try to load the data while a save is in progress. Protecting the file with a mutex will prevent that:
module Atomic_file = struct
type 'a t = {
path : 'a Eio.Path.t;
mutex : Eio.Mutex.t;
}
let of_path path =
{ path; mutex = Eio.Mutex.create () }
let save t data =
Eio.Mutex.use_rw t.mutex ~protect:true (fun () ->
Eio.Path.save t.path data ~create:(`Or_truncate 0o644)
)
let load t =
Eio.Mutex.use_ro t.mutex (fun () ->
Eio.Path.load t.path
)
end
The ~protect:true
in save
makes the critical section non-cancellable,
so that if a cancel happens during a save then we will finish writing the data first.
It can be used like this:
# Eio_main.run @@ fun env ->
let dir = Eio.Stdenv.cwd env in
let t = Atomic_file.of_path (dir / "data") in
Fiber.both
(fun () -> Atomic_file.save t "some data")
(fun () ->
let data = Atomic_file.load t in
traceln "Loaded: %S" data
);;
+Loaded: "some data"
- : unit = ()
Note: In practice, a better way to make file writes atomic is to write the data to a temporary file and then atomically rename it over the old data. That will work even if the whole computer crashes, and does not delay cancellation.
If the operation being performed is very fast (such as updating some in-memory counters),
then it is fine to use the standard library's Mutex
instead.
If the operation does not switch fibers and the resource is only accessed from one domain, then no mutex is needed at all. For example:
(* No mutex needed if only used from a single domain: *)
let in_use = ref 10
let free = ref 0
let release () =
incr free;
decr in_use
Eio.Condition allows a fiber to wait until some condition is true. For example:
module X = struct
(* Note: this version is not safe to share across domains! *)
type t = {
mutable x : int;
changed : Eio.Condition.t;
}
let make x = { x; changed = Eio.Condition.create () }
let await_zero t =
while t.x <> 0 do Eio.Condition.await_no_mutex t.changed done;
traceln "x is now zero"
let set t x =
t.x <- x;
Eio.Condition.broadcast t.changed;
traceln "x set to %d" x
end
# Eio_mock.Backend.run @@ fun () ->
let x = X.make 5 in
Fiber.both
(fun () ->
traceln "Waiting for x to be 0";
X.await_zero x
)
(fun () -> X.set x 0);;
+Waiting for x to be 0
+x set to 0
+x is now zero
- : unit = ()
Note that we need a loop in await_zero
.
This is needed because it's possible that another fiber might set it to zero
and then set it to something else before the waiting fiber resumes.
The above version is not safe to share across domains, because await_zero
relies on the value of x
not changing
after x
is read but before await_no_mutex
registers itself with the condition.
Here's a domain-safe version:
module Y = struct
(* Safe to share between domains. *)
type t = {
mutable y : int;
mutex : Eio.Mutex.t;
changed : Eio.Condition.t;
}
let make y = {
y;
mutex = Eio.Mutex.create ();
changed = Eio.Condition.create ();
}
let await_zero t =
Eio.Mutex.use_ro t.mutex (fun () ->
while t.y <> 0 do Eio.Condition.await t.changed t.mutex done;
traceln "y is now zero (at least until we release the mutex)"
)
let set t y =
Eio.Mutex.use_rw t.mutex ~protect:true (fun () ->
t.y <- y;
Eio.Condition.broadcast t.changed;
traceln "y set to %d" y
);
end
Here, Eio.Condition.await
registers itself with changed
and only then releases the mutex,
allowing other threads to change y
. When it gets woken, it re-acquires the mutex.
# Eio_mock.Backend.run @@ fun () ->
let y = Y.make 5 in
Fiber.both
(fun () ->
traceln "Waiting for y to be 0";
Y.await_zero y
)
(fun () -> Y.set y 0);;
+Waiting for y to be 0
+y set to 0
+y is now zero (at least until we release the mutex)
- : unit = ()
Conditions are more difficult to use correctly than e.g. promises or streams.
In particular, it is easy to miss a notification due to broadcast
getting called before await
.
However, they can be useful if used carefully.
On Unix-type systems, processes can react to signals.
For example, pressing Ctrl-C will send the SIGINT
(interrupt) signal.
Here is an example function that allows itself to be interrupted:
let run_op ~interrupted =
Fiber.first
(fun () ->
Eio.Condition.await_no_mutex interrupted;
traceln "Cancelled at user's request."
)
(fun () ->
traceln "Running operation (Ctrl-C to cancel)...";
Fiber.await_cancel () (* Simulated work *)
)
Note that we don't need a mutex here. We're just waiting for the number of interrupts received to change, and, since that increases monotonically, once we get woken we always want to continue. Also, we don't care about missing interrupts from before this operation started.
The code here is quite subtle.
We rely on the fact that the first branch of the Fiber.first
runs first,
and only starts running the second branch once await_no_mutex
has finished registering.
Thus, we never display the message telling the user to press Ctrl-C before we're ready
to receive it.
This isn't likely to matter if a human is responding to the message,
but if the response is automated then the delay could matter.
To run this function, we need to install a signal handler.
There are very few things that you can do safely in a signal handler.
For example, you can't take a mutex in a signal handler
because the signal might have interrupted a fiber that had already locked it.
However, you can safely call Eio.Condition.broadcast
:
# Eio_main.run @@ fun _env ->
let interrupted = Eio.Condition.create () in
let handle_signal (_signum : int) =
(* Warning: we're in a signal handler now.
Most operations are unsafe here, except for Eio.Condition.broadcast! *)
Eio.Condition.broadcast interrupted
in
Sys.set_signal Sys.sigint (Signal_handle handle_signal);
run_op ~interrupted;;
+Running operation (Ctrl-C to cancel)...
[ user presses Ctrl-C here ]
+Cancelled at user's request.
- : unit = ()
Another common pattern when using signals is using SIGHUP
to tell an application to reload its configuration file:
let main ~config_changed =
Eio.Condition.loop_no_mutex config_changed (fun () ->
traceln "Reading configuration ('kill -SIGHUP %d' to reload)..." (Unix.getpid ());
load_config ();
traceln "Finished reading configuration";
None (* Keep waiting for futher changes *)
)
See the examples/signals
directory for the full code.
Within a domain, fibers are scheduled deterministically. Programs using only the Eio APIs can only behave non-deterministically if given a capability to do so from somewhere else.
For example, Fiber.both f g
always starts running f
first,
and only switches to g
when f
finishes or performs an effect that can switch fibers.
Performing IO with external objects (e.g., stdout
, files, or network sockets) will introduce non-determinism,
as will using multiple domains.
Note that traceln
is unusual. Although it writes (by default) to stderr, it will not switch fibers.
Instead, if the OS is not ready to receive trace output, the whole domain is paused until it is ready.
This means that adding traceln
to deterministic code will not affect its scheduling.
In particular, if you test your code by providing (deterministic) mocks then the tests will be deterministic.
An easy way to write tests is by having the mocks call traceln
and then comparing the trace output with the expected output.
See Eio's own tests for examples, e.g., tests/switch.md.
Note: this only applies to the high-level APIs in the Eio
module.
Programs can behave non-deterministically when using Eio_unix
or the various Low_level
APIs provided by the backends.
Eio applications use resources by calling functions (such as Eio.Flow.write
).
These functions are actually wrappers that look up the implementing module and call
the appropriate function on that.
This allows you to define your own resources.
Here's a flow that produces an endless stream of zeros (like "/dev/zero"):
module Zero = struct
type t = unit
let single_read () buf =
Cstruct.memset buf 0;
Cstruct.length buf
let read_methods = [] (* Optional optimisations *)
end
let ops = Eio.Flow.Pi.source (module Zero)
let zero = Eio.Resource.T ((), ops)
It can then be used like any other Eio flow:
# Eio_main.run @@ fun _ ->
let r = Eio.Buf_read.of_flow zero ~max_size:100 in
traceln "Got: %S" (Eio.Buf_read.take 4 r);;
+Got: "\000\000\000\000"
- : unit = ()
- gemini-eio is a simple Gemini browser. It shows how to integrate Eio with
ocaml-tls
andnotty
. - ocaml-multicore/retro-httpaf-bench includes a simple HTTP server using Eio. It shows how to use Eio with
httpaf
, and how to use multiple domains for increased performance. - Awesome Multicore OCaml lists many other projects.
Eio can be used with several other IO libraries.
Async_eio has experimental support for running Async and Eio code together in a single domain.
You can use Lwt_eio to run Lwt threads and Eio fibers together in a single domain, and to convert between Lwt and Eio promises. This may be useful during the process of porting existing code to Eio.
The Eio_unix module provides features for using Eio with OCaml's Unix module.
In particular, Eio_unix.run_in_systhread
can be used to run a blocking operation in a separate systhread,
allowing it to be used within Eio without blocking the whole domain.
For certain compute-intensive tasks it may be useful to send work to a pool of Domainslib worker domains. You can resolve an Eio promise from non-Eio domains (or systhreads), which provides an easy way to retrieve the result. For example:
open Eio.Std
let pool = Domainslib.Task.setup_pool ~num_domains:2 ()
let fib n = ... (* Some Domainslib function *)
let run_in_pool fn x =
let result, set_result = Promise.create () in
let _ : unit Domainslib.Task.promise = Domainslib.Task.async pool (fun () ->
Promise.resolve set_result @@
match fn x with
| r -> Ok r
| exception ex -> Error ex
)
in
Promise.await_exn result
let () =
Eio_main.run @@ fun _ ->
Fiber.both
(fun () -> traceln "fib 30 = %d" (run_in_pool fib 30))
(fun () -> traceln "fib 10 = %d" (run_in_pool fib 10))
Note that most Domainslib functions can only be called from code running in the Domainslib pool,
while most Eio functions can only be used from Eio domains.
The bridge function run_in_pool
makes use of the fact that Domainslib.Task.async
is able to run from
an Eio domain, and Eio.Promise.resolve
is able to run from a Domainslib one.
Eio provides the support kcas requires to implement blocking in the lock-free software transactional memory (STM) implementation that it provides. This means that one can use all the composable lock-free data structures and primitives for communication and synchronization implemented using kcas to communicate and synchronize between Eio fibers, raw domains, and any other schedulers that provide the domain local await mechanism.
To demonstrate kcas
# #require "kcas"
# open Kcas
let's first create a couple of shared memory locations
let x = Loc.make 0
let y = Loc.make 0
and spawn a domain
# let foreign_domain = Domain.spawn @@ fun () ->
let x = Loc.get_as (fun x -> Retry.unless (x <> 0); x) x in
Loc.set y 22;
x
val foreign_domain : int Domain.t = <abstr>
that first waits for one of the locations to change value and then writes to the other location.
Then we run a Eio program
# let y = Eio_main.run @@ fun _env ->
Loc.set x 20;
Loc.get_as (fun y -> Retry.unless (y <> 0); y) y
val y : int = 22
that first writes to the location the other domain is waiting on and then waits for the other domain to write to the other location.
Joining with the other domain
# y + Domain.join foreign_domain
- : int = 42
we arrive at the answer.
This section contains some recommendations for designing library APIs for use with Eio.
A function should not take a switch argument if it could create one internally instead.
Taking a switch indicates that a function creates resources that outlive the function call, and users seeing a switch argument will naturally wonder what these resources may be and what lifetime to give them, which is confusing if this is not needed.
Creating the switch inside your function ensures that all resources are released promptly.
(* BAD - switch should be created internally instead *)
let load_config ~sw path =
parse_config (Eio.Path.open_in ~sw path)
(* GOOD - less confusing and closes file promptly *)
let load_config path =
Switch.run @@ fun sw ->
parse_config (Eio.Path.open_in ~sw path)
Of course, you could use with_open_in
in this case to simplify it further.
Unlike many languages, OCaml does not automatically cast to super-types as needed. Remember to keep the type polymorphic in your interface so users don't need to do this manually.
For example, if you need an Eio.Flow.source
then users should be able to use a Flow.two_way
without having to cast it first:
(* BAD - user must cast to use function: *)
module Message : sig
type t
val read : Eio.Flow.source_ty r -> t
end
(* GOOD - a Flow.two_way can be used without casting: *)
module Message : sig
type t
val read : _ Eio.Flow.source -> t
end
If you want to store the argument, this may require you to cast internally:
module Foo : sig
type t
val of_source : _ Eio.Flow.source -> t
end = struct
type t = {
src : Eio.Flow.source_ty r;
}
let of_source x = {
src = (x :> Eio.Flow.source_ty r);
}
end
The env
value you get from Eio_main.run
is a powerful capability,
and programs are easier to understand when it's not passed around too much.
In many cases, it's clearer (if a little more verbose) to take the resources you need as separate arguments, e.g.
module Status : sig
val check :
clock:_ Eio.Time.clock ->
net:_ Eio.Net.t ->
bool
end
You can also provide a convenience function that takes an env
too.
Doing this is most appropriate if many resources are needed and
your library is likely to be initialised right at the start of the user's application.
In that case, be sure to request only the resources you need, rather than the full set. This makes it clearer what you library does, makes it easier to test, and allows it to be used on platforms without the full set of OS resources. If you define the type explicitly, you can describe why you need each resource there:
module Status : sig
type 'a env = 'a constraint 'a = <
net : _ Eio.Net.t; (** To connect to the servers *)
clock : _ Eio.Time.clock; (** Needed for timeouts *)
..
> as 'a
val check : _ env -> bool
end
- API reference
- doc/rationale.md describes some of Eio's design tradeoffs in more detail.
- HACKING.md describes how to work with the Eio source code.
Some background about the effects system can be found in:
- Experiences with effects (video), OCaml Workshop 2021.
- "Retrofitting Concurrency onto OCaml" (to appear, PLDI 2021)
- https://kcsrk.info/ocaml/multicore/2015/05/20/effects-multicore/
- Effects examples: https://github.com/ocaml-multicore/effects-examples/tree/master/aio
- Concurrent System Programming with Effect Handlers
- Asynchronous effect based IO using effect handlers