DeepDrugV constructs the voronoi diagram (VD) of protein binding site/pocket or ligand structure based on the 3D or 2D coordinate structure.
- Python 2.7+
- numpy 1.14+
- scipy 0.18+
- Pandas 0.19+
- scikit-spatial 0.12.0
- matplotlib 2.0.2+
- biopandas ; eg : pip/conda install biopandas
- copy/download the code from GitHub
- If input is a 3D coordinate of protein/ligand, it will be projected to 2D plane employing perspective projection: Px= x/1-z, Py= y/1-z
- Run deepdrugV.py with a .mol2 file (see Examples)
create a 2D image using mol2 file in 2D or 3D format
python deepdrugV.py -mol input.mol2 -out output.jpg -dpi integer
-mol stands for the receptor, protein or ligand (MUST BE in a mol2 format)
-out is the name of the output file [OPTION](default is jpg format)
-dpi is the desired image quality [OPTION](default 120 dpi in 2.7 x 2.7 = 256 x 256 px)
creating a 2D image of voronoi using protein pocket file in mol2 3D format
python deepdrugV.py -mol 4v94E.mol2 -out Voronoi_2D_4v94E.jpg -dpi 120
Voronoi image of ATP-binding site protein pocket colored by atom types:
chaperonin (4v94, chain E)
Contributors:
Rajiv Gandhi Govindaraj, Jeffrey Lemoine, Limeng Pu, and Michal Brylinski. "DeepDrugV"