An automated syringe volume measurement system with YOLOv8 and Quantization Aware Training (QAT) implementation
├── LICENSE <- Open-source license if one is chosen
├── Makefile <- Makefile with convenience commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default mkdocs project; see mkdocs.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── pyproject.toml <- Project configuration file with package metadata for intelligent_syringe_volume_measurement_with_yolov8_and_qat
│ and configuration for tools like black
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.cfg <- Configuration file for flake8
│
└── intelligent_syringe_volume_measurement_with_yolov8_and_qat <- Source code for use in this project.
│
├── __init__.py <- Makes intelligent_syringe_volume_measurement_with_yolov8_and_qat a Python module
│
├── data <- Scripts to download or generate data
│ └── make_dataset.py
│
├── features <- Scripts to turn raw data into features for modeling
│ └── build_features.py
│
├── models <- Scripts to train models and then use trained models to make
│ │ predictions
│ ├── predict_model.py
│ └── train_model.py
│
└── visualization <- Scripts to create exploratory and results oriented visualizations
└── visualize.py