Jeff Weltman and Claudia Woodruff
W&W Analytics has been commissioned by Stars, Stripes, and Beer Co. - hereafter referred to as SS&B - to analyze a sample of the craft beer market in order to answer the following research questions:
- How many breweries are present in each state?
- What is the median alcohol content (ABV) for each state? What is the median international bitterness unit (IBU) for each state?
- Which state has the maximum alcoholic (ABV) beer? Which state has the most bitter (IBU) beer?
- Is there any apparent relationship between the bitterness of the beer and its alcoholic content
- Analysis directory
- Analysis.R - R script for ingesting raw data, tidying the data, and answering research questions
- Readme.md
- Data directory
- BrewsAndBreweries.csv - Merged tidy data file
- Readme.md
- TidyBeers.csv - Tidy beer data file
- TidyBreweries.csv - Tidy breweries data file
- Presentation directory
- Readme.md
- WW_Logo.png - Our logo
- Final presentation document (various extensions)
- StarsStripsAndBeerFinal.Rmd
- StarsStripsAndBeerFinal.md
- StarsStripsAndBeerFinal.html
- StarsStripsAndBeerFinal.docs
- Raw directory
- Beers.csv - Raw beer data file
- Breweries.csv - Raw breweries data file
- Readme.csv
- Project Root
- Project codebook (various extensions)
- Codebook.Rmd
- Codebook.md
- Codebook.html
- README.md
- StarsStripesAndBeer.rproj
- Project codebook (various extensions)
These data were collected from the public domain across a variety of sources, including ratebeer.com, the craft breweries' websites, and social media.
This project for SS&B was a truly collaborative endeavor. Both Claudia and Jeff applied their expertise to the research questions, data files, and code. The Codebook and this Readme have been prepared largely by Jeff. The final presentation document was largely Claudia's masterpiece.
We do indeed! Jeff created a Shiny app for just that purpose. For access to this interactive web presentation, visit http://192.241.226.80/shiny/StarsStripesAndBeer/
We would love to hear from you! Thank you for your interest.
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
locale: LC_COLLATE=English_United States.1252, LC_CTYPE=English_United States.1252, LC_MONETARY=English_United States.1252, LC_NUMERIC=C and LC_TIME=English_United States.1252
attached base packages: stats, graphics, grDevices, utils, datasets, methods and base
other attached packages: pander(v.0.6.1), ggplot2(v.2.2.1), reshape2(v.1.4.2), sqldf(v.0.4-11), RSQLite(v.2.0), gsubfn(v.0.6-6) and proto(v.1.0.0)
loaded via a namespace (and not attached): Rcpp(v.0.12.12), compiler(v.3.4.0), plyr(v.1.8.4), R.methodsS3(v.1.7.1), R.utils(v.2.5.0), tools(v.3.4.0), digest(v.0.6.12), bit(v.1.1-12), evaluate(v.0.10.1), memoise(v.1.1.0), tibble(v.1.3.4), gtable(v.0.2.0), R.cache(v.0.12.0), pkgconfig(v.2.0.1), rlang(v.0.1.2), DBI(v.0.7), curl(v.2.8.1), yaml(v.2.1.14), httr(v.1.3.1), stringr(v.1.2.0), knitr(v.1.17), rprojroot(v.1.2), bit64(v.0.9-7), grid(v.3.4.0), data.table(v.1.10.4), R6(v.2.2.2), rmarkdown(v.1.6), blob(v.1.1.0), magrittr(v.1.5), scales(v.0.5.0), backports(v.1.1.1), htmltools(v.0.3.6), repmis(v.0.5), colorspace(v.1.3-2), labeling(v.0.3), stringi(v.1.1.5), lazyeval(v.0.2.0), munsell(v.0.4.3), chron(v.2.3-50) and R.oo(v.1.21.0)