Bitfield Struct
Procedural macro for bitfields that allows specifying bitfields as structs.
As this library provides a procedural macro, it has no runtime dependencies and works for no-std
environments.
- Supports bool flags, raw integers, and every custom type convertible into integers (structs/enums)
- Ideal for driver/OS/embedded development (defining HW registers/structures)
- Generates minimalistic, pure, safe rust functions
- Compile-time checks for type and field sizes
- Rust-analyzer friendly (carries over documentation to accessor functions)
- Exports field offsets and sizes as constants (useful for const asserts)
- Generation of
fmt::Debug
andDefault
Usage
Add this to your Cargo.toml
:
[dependencies]
bitfield-struct = "0.5"
Basics
Let's begin with a simple example. Suppose we want to store multiple data inside a single Byte, as shown below:
7 | 6 | 5 | 4 | 3 | 3 | 1 | 0 |
P | Level | S | Kind |
This crate generates a nice wrapper type that makes it easy to do this:
/// Define your type like this with the bitfield attribute
#[bitfield(u8)]
struct MyByte {
/// The first field occupies the least significant bits
#[bits(4)]
kind: usize,
/// Booleans are 1 bit large
system: bool,
/// The bits attribute specifies the bit size of this field
#[bits(2)]
level: usize,
/// The last field spans over the most significant bits
present: bool
}
// The macro creates three accessor functions for each field:
// <name>, with_<name> and set_<name>
let my_byte = MyByte::new()
.with_kind(15)
.with_system(false)
.with_level(3)
.with_present(true);
assert!(my_byte.present());
Features
Additionally, this crate has a few useful features, which are shown here in more detail.
The example below shows how attributes are carried over and how signed integers, padding, and custom types are handled.
/// A test bitfield with documentation
#[bitfield(u64)]
#[derive(PartialEq, Eq)] // <- Attributes after `bitfield` are carried over
struct MyBitfield {
/// defaults to 16 bits for u16
int: u16,
/// interpreted as 1 bit flag, with a custom default value
#[bits(default = true)]
flag: bool,
/// custom bit size
#[bits(1)]
tiny: u8,
/// sign extend for signed integers
#[bits(13)]
negative: i16,
/// supports any type, with `into_bits`/`from_bits` (const) functions,
/// if not configured otherwise with the `into`/`from` parameters of the bits attribute.
///
/// the field is initialized with 0 (passed into `from_bits`) if not specified otherwise
#[bits(16)]
custom: CustomEnum,
/// public field -> public accessor functions
#[bits(12)]
pub public: usize,
/// padding
#[bits(5)]
__: u8,
}
/// A custom enum
#[derive(Debug, PartialEq, Eq)]
#[repr(u64)]
enum CustomEnum {
A = 0,
B = 1,
C = 2,
}
impl CustomEnum {
// This has to be a const fn
const fn into_bits(self) -> u64 {
self as _
}
const fn from_bits(value: u64) -> Self {
match value {
0 => Self::A,
1 => Self::B,
_ => Self::C,
}
}
}
// Usage:
let mut val = MyBitfield::new()
.with_int(3 << 15)
.with_tiny(1)
.with_negative(-3)
.with_custom(CustomEnum::B)
.with_public(2);
println!("{val:?}");
let raw: u64 = val.into();
println!("{raw:b}");
assert_eq!(val.int(), 3 << 15);
assert_eq!(val.flag(), true);
assert_eq!(val.negative(), -3);
assert_eq!(val.tiny(), 1);
assert_eq!(val.custom(), CustomEnum::B);
assert_eq!(val.public(), 2);
// const members
assert_eq!(MyBitfield::FLAG_BITS, 1);
assert_eq!(MyBitfield::FLAG_OFFSET, 16);
val.set_negative(1);
assert_eq!(val.negative(), 1);
The macro generates three accessor functions for each field. Each accessor also inherits the documentation of its field.
The signatures for int
are:
// generated struct
struct MyBitfield(u64);
impl MyBitfield {
const fn new() -> Self { Self(0) }
const INT_BITS: usize = 16;
const INT_OFFSET: usize = 0;
const fn with_int(self, value: u16) -> Self { /* ... */ }
const fn int(&self) -> u16 { /* ... */ }
fn set_int(&mut self, value: u16) { /* ... */ }
// other field ...
}
// generated trait implementations
impl From<u64> for MyBitfield { /* ... */ }
impl From<MyBitfield> for u64 { /* ... */ }
impl Debug for MyBitfield { /* ... */ }
Hint: You can use the rust-analyzer "Expand macro recursively" action to view the generated code.
Bit Order
The optional order
macro argument determines the layout of the bits, with the default being
Lsb (least significant bit) first:
# use bitfield_struct::bitfield;
#[bitfield(u8, order = Lsb)]
struct MyLsbByte {
/// The first field occupies the least significant bits
#[bits(4)]
kind: usize,
system: bool,
#[bits(2)]
level: usize,
present: bool
}
let my_byte_lsb = MyLsbByte::new()
.with_kind(10)
.with_system(false)
.with_level(2)
.with_present(true);
// .- present
// | .- level
// | | .- system
// | | | .- kind
assert!(my_byte_lsb.0 == 0b1_10_0_1010);
The macro generates the reverse order when Msb (most significant bit) is specified:
# use bitfield_struct::bitfield;
#[bitfield(u8, order = Msb)]
struct MyMsbByte {
/// The first field occupies the most significant bits
#[bits(4)]
kind: usize,
system: bool,
#[bits(2)]
level: usize,
present: bool
}
let my_byte_msb = MyMsbByte::new()
.with_kind(10)
.with_system(false)
.with_level(2)
.with_present(true);
// .- kind
// | .- system
// | | .- level
// | | | .- present
assert!(my_byte_msb.0 == 0b1010_0_10_1);
fmt::Debug
and Default
This macro automatically creates a suitable fmt::Debug
and Default
implementations similar to the ones created for normal structs by #[derive(Debug, Default)]
.
You can disable this with the extra debug
and default
arguments.
#[bitfield(u64, debug = false, default = false)]
struct CustomDebug {
data: u64
}
impl fmt::Debug for CustomDebug {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "0x{:x}", self.data())
}
}
impl Default for CustomDebug {
fn default() -> Self {
Self(123) // note: you can also use `#[bits(64, default = 123)]`
}
}
let val = CustomDebug::default();
println!("{val:?}")