/gemma-cookbook

A collection of guides and examples for the Gemma open models from Google.

Primary LanguageJupyter NotebookApache License 2.0Apache-2.0

Welcome to the Gemma Cookbook

This is a collection of guides and examples for Google Gemma. Gemma is a family of lightweight, state-of-the art open models built from the same research and technology used to create the Gemini models.

Get started with the Gemma models

Gemma is a family of lightweight, state-of-the art open models built from the same research and technology used to create the Gemini models. The Gemma model family includes:

You can find the Gemma models on GitHub, Hugging Face models, Kaggle, Google Cloud Vertex AI Model Garden, and ai.nvidia.com.

Partner quickstart guides

Company Description
Hugging Face Utilize Hugging Face Transformers and TRL for fine-tuning and inference tasks with Gemma models.
NVIDIA Fine-tune Gemma models with NVIDIA NeMo Framework and export to TensorRT-LLM for production.
LangChain This tutorial shows you how to get started with Gemma and LangChain, running in Google Cloud or in your Colab environment.
MongoDB This article presents how to leverage Gemma as the foundation model in a retrieval-augmented generation pipeline or system.

Workshops and technical talks

Notebook Description
Workshop_How_to_Fine_tuning_Gemma.ipynb Recommended finetuning notebook for getting started
Self_extend_Gemma.ipynb Self-extend context window for Gemma in the I/O 2024 Keras talk
Gemma_control_vectors.ipynb Implement control vectors with Gemma in the I/O 2024 Keras talk

Accompanying notebooks for the Build with AI video series

Folder
Business email assistant
Personal code assistant
Spoken language tasks

Cookbook table of contents

Gemma model overview
Common_use_cases.ipynb Illustrate some common use cases for Gemma, CodeGemma and PaliGemma.

Gemma

Inference and serving
Keras_Gemma_2_Quickstart.ipynb Gemma 2 pre-trained 9B model quickstart tutorial with Keras.
Keras_Gemma_2_Quickstart_Chat.ipynb Gemma 2 instruction-tuned 9B model quickstart tutorial with Keras. Referenced in this blog.
Gemma inference with Flax/NNX Gemma 1 inference with Flax/NNX framework (linking to Flax documentation)
Chat_and_distributed_pirate_tuning.ipynb Chat with Gemma 7B and finetune it so that it generates responses in pirates' tone.
gemma_inference_on_tpu.ipynb Basic inference of Gemma with JAX/Flax on TPU.
gemma_data_parallel_inference_in_jax_tpu.ipynb Parallel inference of Gemma with JAX/Flax on TPU.
Gemma_Basics_with_HF.ipynb Load, run, finetune and deploy Gemma using Hugging Face.
Gemma_with_Langfun_and_LlamaCpp.ipynb Leverage Langfun to seamlessly integrate natural language with programming using Gemma 2 and LlamaCpp.
Gemma_with_Langfun_and_LlamaCpp_Python_Bindings.ipynb Leverage Langfun for smooth language-program interaction with Gemma 2 and llama-cpp-python.
Guess_the_word.ipynb Play a word guessing game with Gemma using Keras.
Game_Design_Brainstorming.ipynb Use Gemma to brainstorm ideas during game design using Keras.
Translator_of_Old_Korean_Literature.ipynb Use Gemma to translate old Korean literature using Keras.
Gemma2_on_Groq.ipynb Leverage the free Gemma 2 9B IT model hosted on Groq (super fast speed).
Run_with_Ollama.ipynb Run Gemma models using Ollama.
Run_with_Ollama_Python.ipynb Run Gemma models using Ollama Python library.
Using_Gemma_with_Llamafile.ipynb Run Gemma models using Llamafile.
Using_Gemma_with_LlamaCpp.ipynb Run Gemma models using LlamaCpp.
Using_Gemma_with_LocalGemma.ipynb Run Gemma models using Local Gemma.
Using_Gemini_and_Gemma_with_RouteLLM.ipynb Route Gemma and Gemini models using RouteLLM.
Using_Gemma_with_SGLang.ipynb Run Gemma models using SGLang.
Using_Gemma_with_Xinference.ipynb Run Gemma models using Xinference.
Constrained_generation_with_Gemma.ipynb Constrained generation with Gemma models using LlamaCpp and Guidance.
Integrate_with_Mesop.ipynb Integrate Gemma with Google Mesop.
Integrate_with_OneTwo.ipynb Integrate Gemma with Google OneTwo.
Deploy_with_vLLM.ipynb Deploy a Gemma model using vLLM.
Deploy_Gemma_in_Vertex_AI.ipynb Deploy a Gemma model using Vertex AI.
Prompting
Prompt_chaining.ipynb Illustrate prompt chaining and iterative generation with Gemma.
LangChain_chaining.ipynb Illustrate LangChain chaining with Gemma.
Advanced_Prompting_Techniques.ipynb Illustrate advanced prompting techniques with Gemma.
RAG
RAG_with_ChromaDB.ipynb Build a Retrieval Augmented Generation (RAG) system with Gemma using ChromaDB and Hugging Face.
Minimal_RAG.ipynb Minimal example of building a RAG system with Gemma using Google UniSim and Hugging Face.
RAG_PDF_Search_in_multiple_documents_on_Colab.ipynb RAG PDF Search in multiple documents using Gemma 2 2B on Google Colab.
Using_Gemma_with_LangChain.ipynb Examples to demonstrate using Gemma with LangChain.
Using_Gemma_with_Elasticsearch_and_LangChain.ipynb Example to demonstrate using Gemma with Elasticsearch, Ollama and LangChain.
Gemma_with_Firebase_Genkit_and_Ollama.ipynb Example to demonstrate using Gemma with Firebase Genkit and Ollama
Gemma_RAG_LlamaIndex.ipynb RAG example with LlamaIndex using Gemma.
Finetuning
Finetune_with_Axolotl.ipynb Finetune Gemma using Axolotl.
Finetune_with_XTuner.ipynb Finetune Gemma using XTuner.
Finetune_with_LLaMA_Factory.ipynb Finetune Gemma using LLaMA-Factory.
Finetune_with_Torch_XLA.ipynb Finetune Gemma using PyTorch/XLA.
Finetune_with_JORA.ipynb Finetune Gemma using JORA.
Finetune_with_Unsloth.ipynb Finetune Gemma using Unsloth.
Finetune_with_LitGPT.ipynb Finetune Gemma using LitGPT.
Custom_Vocabulary.ipynb Demonstrate how to use a custom vocabulary "<unused[0-98]>" tokens in Gemma.
Alignment
Aligning_DPO_Gemma_2b_it.ipynb Demonstrate how to align a Gemma model using DPO (Direct Preference Optimization) with Hugging Face TRL.
Evaluation
Gemma_evaluation.ipynb Demonstrate how to use Eleuther AI's LM evaluation harness to perform model evaluation on Gemma.
Mobile
Gemma on Android Android app to deploy fine-tuned Gemma-2B-it model using MediaPipe LLM Inference API.

PaliGemma

Inference
Image_captioning_using_PaliGemma.ipynb Use PaliGemma to generate image captions using Keras.
Image_captioning_using_finetuned_PaliGemma.ipynb Compare the image captioning results using different PaliGemma versions with Hugging Face.
Finetune_PaliGemma_for_image_description.ipynb Finetune PaliGemma for image description using JAX.
Integrate_PaliGemma_with_Mesop.ipynb Integrate PaliGemma with Google Mesop.
Zero_shot_object_detection_in_images_using_PaliGemma.ipynb Zero-shot Object Detection in images using PaliGemma.
Zero_shot_object_detection_in_videos_using_PaliGemma.ipynb Zero-shot Object Detection in videos using PaliGemma.
Referring_expression_segmentation_in_images_using_PaliGemma.ipynb Referring Expression Segmentation in images using PaliGemma.
Referring_expression_segmentation_in_videos_using_PaliGemma.ipynb Referring Expression Segmentation in videos using PaliGemma.
Finetuning
Finetune_PaliGemma_with_Keras.ipynb Finetune PaliGemma with Keras.
Finetune_PaliGemma_for_object_detection.ipynb Fine-tune PaliGemma for object detection on a fashion dataset using JAX.
Mobile
PaliGemma on Android Inference PaliGemma on Android using Hugging Face and Gradio Client API for tasks like zero-shot object detection, image captioning, and visual question-answering.

CodeGemma

Finetuning
CodeGemma_finetuned_on_SQL_with_HF.ipynb Fine-Tuning CodeGemma on the SQL Spider Dataset.

Get help

Ask a Gemma cookbook-related question on the developer forum, or open an issue on GitHub.

Wish list

If you want to see additional cookbooks implemented for specific features/integrations, please send us a pull request by adding your feature request(s) in the wish list.

If you want to make contributions to the Gemma Cookbook project, you are welcome to pick any idea in the wish list and implement it.

Contributing

Contributions are always welcome. Please read contributing before implementation.

Thank you for developing with Gemma! We’re excited to see what you create.

Translation of this repository