████████║ ██ ██ ██████████ █████████║
██ █║ █ █ ║██║ █║
██ █║ █ █ ║██║ █████████║
██ █║ █ █ ║██║ ██║
██ █║ █ █ ║██║ ██║
███████║ █████ ██████████ █████████
A simple, fully convolutional model for real-time instance segmentation. This is the code for our papers:
The implementation of backbone network is based on repository: Yolact-github
- Clone this repository and enter it:
git clone https://github.com/jia2lin3yuan1/2020-instanceSeg.git $PRJ_NAME cd $PRJ_NAME
- Set up the environment using one of the following methods:
- Using Anaconda
- Run
conda env create -f environment.yml
- Run
- Manually with pip
- Set up a Python3 environment (e.g., using virtenv).
- Install Pytorch 1.0.1 (or higher) and TorchVision.
- Install some other packages:
# Cython needs to be installed before pycocotools pip install cython pip install opencv-python pillow pycocotools matplotlib pip install scikit-image pip install scipy==1.2.0
- Using Anaconda
- If you'd like to train DVIS, download the COCO dataset and the 2014/2017 annotations.
Note that this script will take a while and dump 21gb of files into
./data/coco
.sh data/scripts/COCO.sh
- If you'd like to evaluate DVIS on
test-dev
, downloadtest-dev
with this script.sh data/scripts/COCO_test.sh
- Install pymeanshift following instruction on Install
- You could edit the config_xx.py in data/ to customize the network setting and dataset setting.
- You could run with specific the arguments on shell command:
python train.py --config=plus_resnet50_config_550 --resume=PATH/TO/YOUR/FILE --start_iter=0 --exp_name=dummy
- Or, you could customize the json script in exp_scripts/, and run with:
python train.py --scripts=exp_scripts/xxx.json