/2020-instanceSeg

Deep Variational Instance Segmentation

Primary LanguagePythonMIT LicenseMIT

Deep Variational Instance Segmentation

    ████████║   ██         ██  ██████████    █████████║
    ██      █║   █         █      ║██║       █║
    ██       █║   █       █       ║██║       █████████║
    ██       █║    █     █        ║██║              ██║
    ██      █║      █   █         ║██║              ██║
    ███████║        █████      ██████████    █████████

A simple, fully convolutional model for real-time instance segmentation. This is the code for our papers:

The implementation of backbone network is based on repository: Yolact-github

Installation

  • Clone this repository and enter it:
    git clone https://github.com/jia2lin3yuan1/2020-instanceSeg.git $PRJ_NAME
    cd  $PRJ_NAME
  • Set up the environment using one of the following methods:
    • Using Anaconda
      • Run conda env create -f environment.yml
    • Manually with pip
      • Set up a Python3 environment (e.g., using virtenv).
      • Install Pytorch 1.0.1 (or higher) and TorchVision.
      • Install some other packages:
        # Cython needs to be installed before pycocotools
        pip install cython
        pip install opencv-python pillow pycocotools matplotlib 
        pip install scikit-image
        pip install scipy==1.2.0
  • If you'd like to train DVIS, download the COCO dataset and the 2014/2017 annotations. Note that this script will take a while and dump 21gb of files into ./data/coco.
    sh data/scripts/COCO.sh
  • If you'd like to evaluate DVIS on test-dev, download test-dev with this script.
    sh data/scripts/COCO_test.sh
  • Install pymeanshift following instruction on Install

Train on your own dataset:

  • You could edit the config_xx.py in data/ to customize the network setting and dataset setting.
  • You could run with specific the arguments on shell command:
     python train.py --config=plus_resnet50_config_550 --resume=PATH/TO/YOUR/FILE --start_iter=0 --exp_name=dummy     
  • Or, you could customize the json script in exp_scripts/, and run with:
     python train.py --scripts=exp_scripts/xxx.json