main steps: step 0) ami_pre_dnn.sh breakdowns: step 0 breakdown: 0) ami_prep_data.sh -- prepare ami data 1) ami_extract_mfcc.sh -- extract mfcc of ami 2) ami_run_gen_lbl.sh -- get non-overlapping segments per recording from rttm and pass to downstream, subsequently call ami_gen_label.py | ami_gen_label.py -- extract vad label from supported segments 3) ami_cat_data.sh -- provide all mfcc/lbl files in list, subsequently call ami_cat_data.py | ami_cat_data.py -- combine file presented in file lists of input
jiamin1013/superVAD
Experiments on models for robust VAD (with extension to speaker type detection)
Python