/intent_classification

深度网络实现意图分类。

Primary LanguageJupyter Notebook

利用深度模型实现意图识别

基于对话语句的意图进行识别,主要实现一些神经网络分类模型。
可参考作者另一个项目:https://github.com/jiangnanboy/movie_knowledge_graph_app。
这里使用电影问答的相关数据进行测试。

安装pyhanlp用作分词与实体识别

电影类型:ng
电影名:nm
演员名:nnt

1.下载hanlp模型和hanlp的jar包放在目录Anaconda3\Lib\site-packages\pyhanlp\static

2.在路径Anaconda3\Lib\site-packages\pyhanlp\static\data\dictionary\custom下放以下文件(演员名.txt;电影名.txt;电影类型.txt;other.txt),当自定义词典
    演员名.txt
    电影名.txt
    电影类型.txt
    other.txt
    
3.修改自定义词典配制D:\Anaconda3\Lib\site-packages\pyhanlp\static\hanlp.properties
    CustomDictionaryPath=data/dictionary/custom/CustomDictionary.txt; 现代汉语补充词库.txt; 全国地名大全.txt ns; 人名词典.txt; 机构名词典.txt; 上海地名.txt ns; 电影类型.txt ng; 电影名.txt nm; 演员名.txt nnt; other.txt;data/dictionary/person/nrf.txt nrf;

项目结构

.
├── classification_data //训练和测试用数据
│   
├── feedforward_network //前馈网络
│   
├── textcnn //textcnn
│       
├── textrnn //textrnn
│   
├── textrcnn //textrcnn
│ 
├── transformer-encoder // transformer-encoder
│   
├── cnn_residual //残差cnn
│ 
.

意图识别

1.利用分类模型对用户输入的问题进行意图识别

(1).训练数据在目录 intent_classification\classification_data下
    电影训练数据:classification_segment_data.txt与classification_data.csv
    教育学科训练数据:knowledge_point_qa_data.csv

(2).有16个意图的电影数据,见目录 intent_classification\classification_data\question_classification.txt;
    有9个意图的教育学科数据,见目录 intent_classification\classification_data\knowledge_point_qa_classification.txt;

(3).识别和预测

    (a).feedforward-network进行意图识别

        训练代码:intent_classification\feedforward_network\train.ipynb
    
        预测代码:intent_classification\feedforward_network\predict.ipynb
    
    (b).textcnn进行意图识别

        其中[sgns.sogou.char]使用了sogou的预训练向量可从这里下载(https://github.com/Embedding/Chinese-Word-Vectors)
    
        训练代码:intent_classification\textcnn\train.ipynb
    
        预测代码:intent_classification\textcnn\predict.ipynb
    
    (c).textrnn进行意图识别

        其中[sgns.sogou.char]使用了sogou的预训练向量可从这里下载(https://github.com/Embedding/Chinese-Word-Vectors)
    
        训练代码:intent_classification\textrnn\train.ipynb
    
        预测代码:intent_classification\textrnn\predict.ipynb
    
    (d).textrcnn进行意图识别

        其中[sgns.sogou.char]使用了sogou的预训练向量可从这里下载(https://github.com/Embedding/Chinese-Word-Vectors)
    
        训练代码:intent_classification\textrcnn\train.ipynb
    
        预测代码:intent_classification\textrcnn\predict.ipynb
    
    (e).transformer-encoder进行意图识别

        同上,可以使用预训练向量[sgns.sogou.char]
    
        训练代码:intent_classification\transformer_encoder\train.ipynb
    
        预测代码:intent_classification\transformer_encoder\predict.ipynb
        
    (f).cnn-residual进行意图识别
    
        同上,可以使用预训练向量[sgns.sogou.char]
    
        训练代码:intent_classification\cnn_residual\train.ipynb
    
        预测代码:intent_classification\cnn_residual\predict.ipynb

后续......

1.实现更多的深度分类模型
2.利用深度模型代替pyhanlp识别实体
...

作者的qq,如您有什么想法可以和作者联系:2229029156。

如果您支持作者继续开发更加完善的功能,请动一动手为此项目打个星吧或fork此项目,这是对作者最大的鼓励。

Requirements

requirement.txt

References