一.将roberta模型转为onnx,并对[MASK]进行推理预测。
二.将macbert模型转为onnx,并对中文进行拼写纠错。
三.将paddle ernie模型转为pytorch以及将pytorch ernie模型转为onnx。
模型在从这里 下载。
def load_model():
tokenizer = BertTokenizer.from_pretrained("../model/chinese_roberta_L-2_H-512")
model = BertForMaskedLM.from_pretrained("../model/chinese_roberta_L-2_H-512")
return model, tokenizer
def convert2onnx(model, tokenizer, save_path):
convert('pt', model, Path(save_path), 11, tokenizer)
def onnx_test(onnx_path, topk=5):
tokenizer = BertTokenizer.from_pretrained("../model/chinese_roberta_L-2_H-512")
sent = '**的首都是' + tokenizer.mask_token + '京。'
tokenized_tokens = tokenizer(sent)
mask_idx = tokenized_tokens["input_ids"].index(tokenizer.convert_tokens_to_ids("[MASK]"))
input_ids = np.array([tokenized_tokens['input_ids']], dtype=np.int64)
attention_mask = np.array([tokenized_tokens['attention_mask']], dtype=np.int64)
token_type_ids = np.array([tokenized_tokens['token_type_ids']], dtype=np.int64)
model = onnx.load(onnx_path)
sess = ort.InferenceSession(bytes(model.SerializeToString()))
result = sess.run(
output_names=None,
input_feed={"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids}
)[0]
predicted_index = np.argsort(-result[0][mask_idx])[:topk]
for index in predicted_index:
predicted_token = tokenizer.convert_ids_to_tokens([index])[0]
print('index : {} -> token : {}'.format(index, predicted_token))
结果:
index : 1266 -> token : 北
index : 1298 -> token : 南
index : 691 -> token : 东
index : 4242 -> token : 燕
index : 3307 -> token : 望
模型在从这里 下载。
def load_model():
tokenizer = BertTokenizer.from_pretrained("../model/macbert4csc-base-chinese")
model = BertForMaskedLM.from_pretrained("../model/macbert4csc-base-chinese")
return model, tokenizer
def convert2onnx(model, tokenizer, save_path):
convert('pt', model, Path(save_path), 11, tokenizer)
def onnx_test(onnx_path):
tokenizer = BertTokenizer.from_pretrained("../model/macbert4csc-base-chinese")
sent = '你找到你最喜欢的工作,我也很高心。'
tokenized_tokens = tokenizer(sent)
input_ids = np.array([tokenized_tokens['input_ids']], dtype=np.int64)
attention_mask = np.array([tokenized_tokens['attention_mask']], dtype=np.int64)
token_type_ids = np.array([tokenized_tokens['token_type_ids']], dtype=np.int64)
model = onnx.load(onnx_path)
sess = ort.InferenceSession(bytes(model.SerializeToString()))
result = sess.run(
output_names=None,
input_feed={"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids}
)[0]
_text = tokenizer.decode(np.argmax(result[0], axis=-1), skip_special_tokens=True).replace(' ', '')
print('_text: {}'.format(_text))
corrected_text = _text[:len(sent)]
corrected_text, details = get_errors(corrected_text, sent)
print(sent, ' => ', corrected_text, details)
结果:
你找到你最喜欢的工作,我也很高心。 => 你找到你最喜欢的工作,我也很高兴。 [('心', '兴', 15, 16)]
paddle ernie模型下载:
ERNIE1.0: https://ernie-github.cdn.bcebos.com/model-ernie1.0.1.tar.gz and unzip
ERNIE-tiny: https://ernie-github.cdn.bcebos.com/model-ernie_tiny.1.tar.gz and unzip
ERNIE2.0 https://ernie-github.cdn.bcebos.com/model-ernie2.0-en.1.tar.gz and unzip
ERNIE large https://ernie-github.cdn.bcebos.com/model-ernie2.0-large-en.1.tar.gz and unzip
转为pytorch模型见src/ernie_paddle2pytorch.py
def onnx_test(onnx_path, topk=5):
tokenizer = BertTokenizer.from_pretrained("../model/ernie_pytorch")
sent = '**的首都是' + tokenizer.mask_token + '京。'
tokenized_tokens = tokenizer(sent)
mask_idx = tokenized_tokens["input_ids"].index(tokenizer.convert_tokens_to_ids("[MASK]"))
input_ids = np.array([tokenized_tokens['input_ids']], dtype=np.int64)
attention_mask = np.array([tokenized_tokens['attention_mask']], dtype=np.int64)
token_type_ids = np.array([tokenized_tokens['token_type_ids']], dtype=np.int64)
model = onnx.load(onnx_path)
sess = ort.InferenceSession(bytes(model.SerializeToString()))
result = sess.run(
output_names=None,
input_feed={"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids}
)[0]
predicted_index = np.argsort(-result[0][mask_idx])[:topk]
for index in predicted_index:
predicted_token = tokenizer.convert_ids_to_tokens([index])[0]
print('index : {} -> token : {}'.format(index, predicted_token))
结果:
index : 252 -> token : 北
index : 219 -> token : 南
index : 504 -> token : 首
index : 28 -> token : 上
index : 242 -> token : 东