- data/
- data/train_img/*.jpg
- data/train_img.txt
- data/train_label.txt
- data/test_img/*.jpg
- data/test_img.txt
- data/test_label.txt
file | description |
---|---|
data/train_img/ | training image fold |
data/test_img/ | testing image fold |
data/train_img.txt | file name list for training image |
data/test_img.txt | file name list for testing image |
data/train_label.txt | label list for training image |
data/test_label.txt | label list for testing image |
requirements:
torch
torchvision
running example:
python multi_label_classifier.py
output:
Training Phase: Epoch: [ 0][ 0/ 3] Iteration Loss: 0.693
Training Phase: Epoch: [ 1][ 0/ 3] Iteration Loss: 0.660
Training Phase: Epoch: [ 2][ 0/ 3] Iteration Loss: 0.619
Training Phase: Epoch: [ 3][ 0/ 3] Iteration Loss: 0.596
Training Phase: Epoch: [ 4][ 0/ 3] Iteration Loss: 0.542
Training Phase: Epoch: [ 5][ 0/ 3] Iteration Loss: 0.509
Training Phase: Epoch: [ 6][ 0/ 3] Iteration Loss: 0.467
Training Phase: Epoch: [ 7][ 0/ 3] Iteration Loss: 0.464
Training Phase: Epoch: [ 8][ 0/ 3] Iteration Loss: 0.439
Training Phase: Epoch: [ 9][ 0/ 3] Iteration Loss: 0.377
Training Phase: Epoch: [10][ 0/ 3] Iteration Loss: 0.329
Training Phase: Epoch: [11][ 0/ 3] Iteration Loss: 0.324
We use the following dataset for our example: link.