A practical and extensible project for fine-tuning multilingual translation models using LoRA. Covers English โ Chinese, English โ Nepali, and combines both for multi-task learning on a compact LLaMA-3.2-3B base.
- โ
Fine-tuned translation models on:
- English โ Chinese (WMT19)
- English โ Nepali (iamTangsang/Nepali-to-English-Translation-Dataset)
- Combined multilingual model (Chinese โ English โ Nepali)
- โ English โ Chinese, English โ Nepali fine-tuning performed via LoRA (Low-Rank Adaptation) on top of "Qwen/Qwen2.5-0.5B"
- โ
Combined multilingual model (Chinese โ English โ Nepali) fine-tuning performed via LoRA (Low-Rank Adaptation) on top of
meta-llama/Llama-3.2-3B - โ Used Hugging Face Transformers and Trainer APIs for reproducible training on Jupyter Notebook
- โ Evaluation metrics: BLEU and chrF++ (details below)
| Language Pair | BLEU Score Progression | chrF++ Score Progression |
|---|---|---|
| ZH โ EN | 2.86 โ 18.63 โ 19.05 | 14.10 โ 45.92 โ 45.81 |
| EN โ ZH | 0.00 โ - โ 0.00 | 1.42 โ 18.80 โ 19.21 |
| NE โ EN | 0.00 โ 19.34 โ 20.42 | 8.73 โ 41.94 โ 42.01 |
| EN โ NE | 0.00 โ - โ 0.00 | 0.12 โ 27.90 โ 30.38 |
๐ These improvements were achieved through progressive fine-tuning with LoRA using merged datasets.
You can open and run each notebook for training or inference:
En-Zh.ipynb: English โ Chinese LoRA fine-tuningEn-Ne.ipynb: English โ Nepali LoRA fine-tuningZh-En-Ne.ipynb: Multilingual fine-tuning with merged datasets
๐งช All training done using Jupyter Notebook & Hugging Face Trainer
๐ง Easily extendable to new language pairs by updating thelang_pairfield in dataset format:
{"input": ..., "output": ..., "lang_pair": "en-zh"}
- ๐ Investigate the use of English as a bridging high-resource language to enhance zero-shot or few-shot performance on unseen language translation between low-resource pairs (e.g., Nepali โ Chinese via English)
- ๐งช Experiment with pivot translation and triangular training setups to evaluate whether they improve generalization
- ๐ Explore multilingual token alignment and shared embedding space techniques for better bridging
- meta-llama/Llama-3.2-3B for the base model
- WMT19 and iamTangsang for dataset resources
This project is open-sourced under the MIT License.
Please credit the original dataset providers and model creators when reusing.