Darts family models pre-trained
May 17, 2023
- Add Vision GNN ImageNet-1k models, Thank from Vision GNN
Feb 2, 2022
- Add AutoFormerV2 ImageNet-1k models, Thank from AutoFormerV2
Oct 6, 2021
- Add PNASNet5 ImageNet-1k models, Thank from PNASNet5
Sep 26, 2021
- Add ResT ImageNet-1k models, Thank from ResT
Sep 20, 2021
- Add OFA-595 ImageNet-1k and ImageNet-21k, Thank from 21k-weight
- Add TResNet-M ImageNet-21k, Thank from 21k-weight
Sep 5, 2021
- Add ResNet50 ImageNet-1k and ImageNet-21k, Thank from 21k-weight
Aug 17, 2021
- Add EEEA-Net-C1 model
Aug 3, 2021
- Add EEEA-Net-C2 model
July 20, 2021
- Add test imagenet sctipt and result
April 5, 2021
- Add NASNet model
- Set params auxiliary
Oct 27, 2020
- Add DARTSv2, PDART, RelativeNAS models
- nasnet
- dartsv2
- pdarts
- relative_nas
- eeea_c1, eeea_c2
- resnet50_1k, resnet50_21k
- ofa595_1k, ofa595_21k
- tresnet_m_21k
- rest_lite, rest_small, rest_base, rest_large
- pnas5
- autoformerv2_tiny, autoformerv2_small, autoformerv2_base
- pvig_ti_224_gelu, pvig_s_224_gelu, pvig_m_224_gelu, pvig_b_224_gelu
The library can be installed with pip:
pip install darmo
import darmo
# just change -> "dartsv2", "pdarts", "relative_nas", "nasnet", "eeea_c2", "eeea_c1"
model = darmo.create_model("dartsv2", num_classes=1000, pretrained=True, auxiliary=True)
# create model with ImageNet pretrained
model = darmo.create_model("dartsv2", num_classes=1000, pretrained=True, auxiliary=True)
# Reset classifier layer with add dropout before classifier layer
model.reset_classifier(num_classes=100, dropout=0.2)
git clone https://github.com/jitdee-ai/darmo/
cd darmo
python test_imagenet.py --arch relative_nas --data [path of imagenet include val folder]
Model | Top-1 Acc | Top-5 Acc |
---|---|---|
dartsv2 | 73.59 | 91.40 |
pdarts | 75.94 | 92.74 |
eeea_c1 | 74.19 | 91.49 |
eeea_c2 | 76.17 | 92.66 |
@software{chakkrit_termritthikun_2020_4139755,
author = {Chakkrit Termritthikun},
title = {jitdee-ai/darmo: pre-trained models for darts},
month = oct,
year = 2020,
publisher = {Zenodo},
version = {0.0.4},
doi = {10.5281/zenodo.4139755},
url = {https://doi.org/10.5281/zenodo.4139755}
}