/Medical-Image-AI-Challenge-2023-Pathology-data

Medical Image AI Challenge 2023: Pathology data | 병리영상과 임상정보를 활용한 흑색종 재발 예측 | 최종 4.5위 (62팀 참가)

Primary LanguagePython

Medical Image AI Challenge 2023: Pathology data

This repository contains the final submission of team "달려달려" in the Medical Image AI Challenge 2023: Pathology data hosted by Seoul National University Hospital.

  • Competition: Medical Image AI Challenge 2023: Pathology data
  • Host: Seoul National University Hospital
  • Objective: Prediction of melanoma recurrence using whole slide image and tabular information
  • Result: Reached top 5 private score out of 62 teams, advanced to the final presentation stage but failed to win awards
  • Reproduction: Clone this repository and execute main.py
  • Presentation: Here

cf. The datasets used cannot be publicly available due to the regulations.

File Tree

Vault
├── main.py
├── preprocessing
│   ├── patch_conversion.py
│   ├── patch_extraction.py
│   └── removing_background.py
├── resnet
│   ├── predictions
│   ├── weights
│   ├── dataset.py
│   ├── model.py
│   ├── predictor.py
│   └── trainer.py
├── unetvit
│   ├── predictions
│   ├── weights
│   ├── dataset.py
│   ├── model.py
│   ├── predictor.py
│   └── trainer.py
├── utils
│   ├── config.py
│   └── utils.py
└── dataset
    ├── train
    │   ├── train
    │   │   ├── train_0001.png
    │   │   ├── ...
    │   │   └── train_xxxx.png
    │   ├── train_bg_rm
    │   │   ├── train_0001.png
    │   │   ├── ...
    │   │   └── train_xxxx.png
    │   ├── train_patch
    │   │   ├── train_0001_1.png
    │   │   ├── ...
    │   │   ├── train_0001_5.png
    │   │   ├── train_0002_1.png
    │   │   ├── ...
    │   │   └── train_xxxx_5.png
    │   └── train_patch_rs
    │       ├── train_0001_1.npy
    │       ├── ...
    │       ├── train_0001_5.npy
    │       ├── train_0002_1.npy
    │       ├── ...
    │       └── train_xxxx_5.npy
    ├── test
    │   ├── test
    │   ├── test_bg_rm
    │   ├── test_patch
    │   └── test_patch_rs
    ├── train_dataset.csv   
    └── test_dataset.csv

Logs and References