An optimized sparse merkle tree.
size | proof size | update | get | merkle proof | verify proof |
---|---|---|---|---|---|
2n + log(n) | log(n) | log(n) | log(n) | log(n) | log(n) |
Features:
- Multi-leaves existence / non-existence merkle proof
- Customizable hash function
- Rust
no_std
support
This article describes algorithm of this data structure An optimized compacted sparse merkle tree
Notice this library is not stabled yet. The API and the format of the proof may be changed in the future. Make sure you know what you are doing before using this library.
A sparse merkle tree is a perfectly balanced tree contains 2 ^ N
leaves:
# N = 256 sparse merkle tree
height:
255 0
/ \
254 0 1
.............................
/ \ / \
2 0 1 0 1
1 / \ / \ / \ / \
0 0 1 0 1 ... 0 1 0 1
0x00..00 0x00..01 ... 0x11..11
The above graph demonstrates a sparse merkle tree with 2 ^ 256
leaves, which can mapping every possible H256
value into leaves. The height of the tree is 256
, from top to bottom, we denote 0
for each left branch and denote 1
for each right branch, so we can get a 256 bits path, which also can represent in H256
, we use the path as the key of leaves, the most left leaf's key is 0x00..00
, and the next key is 0x00..01
, the most right key is 0x11..11
.
MIT