The Simultaneous and Heterogenous Multithreading project (Jetson nano + edgeTPU).
This project contains two major parts: kernel model training scheme and the acutal partition execution scheme. These two schemes require two different cooresponding platforms.
The kernel model training stage: Ubuntu 20.04 x86_64 12th Gen Intel(R) Core(TM) i9-12900KF (Rayquaza in Escal's environment)
The partition execution stage: Ubuntu 18.04 aarch64 Cortex-A57 (nano-2 in Escal's environment)
- NVIDIA Drivers
Please refer to: https://www.simplilearn.com/tutorials/docker-tutorial/how-to-install-docker-on-ubuntu
or the official website: https://docs.docker.com/engine/install/ubuntu/
sudo apt-get remove docker docker-engine docker.io
sudo apt-get update
sudo apt install docker.io
sudo snap install docker
Check docker verison
docker --version
Run docker hello-world
sudo docker run hello-world
Please refer to: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
- install
curl
sudo apt update && sudo apt upgrade
sudo apt install curl
- install the NVIDIA Container Toolkit
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-docker2
sudo systemctl restart docker
Reference : https://qengineering.eu/install-opencv-4.5-on-jetson-nano.html
- Cross-compile it on x86 machine
(on x86 host at $GITTOP)$ sh scripts/build_gptpu_utils_on_x86.sh
- install the output
libgptpu_utils.so
and headergptpu_utils.h
on nano aarch64 machine
(on aarch64 host at $GITTOP)$ sh scripts/install_gptpu_utils_on_aarch64.sh
(TBD)
To build project and run a single CPU v.s. GPU example:
(on host at $GITTOP)$ mkdir -p nano_host_build && cd nano_host_build
(on host at $GITTOP)$ cmake .. && make
(on host at $GITTOP)$ sudo ./gpgtpu sobel_2d 1024 1024 1 cpu gpu ../del.csv
To build project and run a single CPU v.s. edgeTPU example:
(on host at $GITTOP)$ sh scripts/docker_setup_partition.sh
(on host at $GITTOP)$ sh scripts/docker_launch_partition.sh
(in docker at $GITTOP)$ sh scripts/nano_docker_unit_test.sh
1. docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].
- Follow this steps to uninstall and install docker for nvidia image: NVIDIA/nvidia-docker#1637 (comment).
- Make sure the following command gives good
nvidia-smi
output:
sudo docker run --rm --gpus all nvidia/cuda:11.7.0-devel-ubuntu20.04 nvidia-smi
(Replace version numbers accordingly if cuda and Ubuntu versions vary.)
2. scripts/docker_setup.sh: 7: .: Can't open fatal: unsafe repository ('/home/kuanchiehhsu/GPGTPU' is owned by someone else)
To add an exception for this directory, call:
git config --global --add safe.directory '*'
One of many reasons is that too many edgetpu runtime versions are installed as mentioned here: google-coral/tflite#45 (comment)
Remove all dpkg -l | grep edgetpu
listed ones and make sure that the one compiled from source code within this project libedgetpu
is used.
opencv2 is missing (not installed yet), please install first.
Basic summary (using installing 4.5.5 version as example):
# download the latest version
$ cd ~
$ wget -O opencv.zip https://github.com/opencv/opencv/archive/4.5.5.zip
$ wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.5.5.zip
# unpack
$ unzip opencv.zip
$ unzip opencv_contrib.zip
# some administration to make live easier later on
$ mv opencv-4.5.5 opencv
$ mv opencv_contrib-4.5.5 opencv_contrib
# clean up the zip files
$ rm opencv.zip
$ rm opencv_contrib.zip
$ cd ~/opencv
$ mkdir build
$ cd build
(Note: CMAKE_INSTALL_PREFIX typical preference: /usr/local/)
$ cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr \
-D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \
-D EIGEN_INCLUDE_PATH=/usr/include/eigen3 \
-D WITH_OPENCL=OFF \
-D WITH_CUDA=ON \
-D CUDA_ARCH_BIN=5.3 \
-D CUDA_ARCH_PTX="" \
-D WITH_CUDNN=ON \
-D WITH_CUBLAS=ON \
-D ENABLE_FAST_MATH=ON \
-D CUDA_FAST_MATH=ON \
-D OPENCV_DNN_CUDA=ON \
-D ENABLE_NEON=ON \
-D WITH_QT=OFF \
-D WITH_OPENMP=ON \
-D BUILD_TIFF=ON \
-D WITH_FFMPEG=ON \
-D WITH_GSTREAMER=ON \
-D WITH_TBB=ON \
-D BUILD_TBB=ON \
-D BUILD_TESTS=OFF \
-D WITH_EIGEN=ON \
-D WITH_V4L=ON \
-D WITH_LIBV4L=ON \
-D OPENCV_ENABLE_NONFREE=ON \
-D INSTALL_C_EXAMPLES=OFF \
-D INSTALL_PYTHON_EXAMPLES=OFF \
-D PYTHON3_PACKAGES_PATH=/usr/lib/python3/dist-packages \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D BUILD_EXAMPLES=OFF ..
(Note: the make step might take 1.5 hours on Jetson nano)
$ make -j4