Jupyter is a tool for running interactive notebooks; basically add Python with Markdown and you've got Jupyter. if you haven't used it before, I recommend you do.
In this post, I'm going to show you how to deploy a Jupyter Notebook server on Heroku using Docker.
Jupyter has the ability to create new notebooks and they will 100% save on your deployed docker-based Jupyter server... but they will disappear as soon as you deploy a new version. That's because containers, by their very nature, are ephemeral by default.
This caveat doesn't mean we shouldn't do this... it just means it is a HUGE consideration when using this guide over something like http://colab.research.google.com.
Near the bottom, I'll show you how to package all your Jupyter contents, download it, and unpackage it again when you deploy.
cfe_jupyter
| Dockerfile
│ Pipfile
│ Pipfile.lock
│
└───conf
│ │ jupyter.py
|
└───nbs
│ │ notebook.tar.gz
│
└───scripts
│ Dockerfile
│ d_build.sh
| d_run.sh
| deploy.sh
| entrypoint.sh
pip install pipenv
cd path/to/your/project/
pipenv install jupyter --python 3.8
Generate Default Config
jupyter notebook --generate-config
This command creates the default jupyter_notebook_config.py
file on your local machine. Mine was stored on ~/.jupyter/jupyter_notebook_config.py
Create conf/jupyter.py
mkdir conf
echo "" > conf/jupyter.py
In conf/jupyter.py
add:
import os
c = get_config()
# Kernel config
c.IPKernelApp.pylab = 'inline' # if you want plotting support always in your notebook
# Notebook config
c.NotebookApp.notebook_dir = 'nbs'
c.NotebookApp.allow_origin = u'cfe-jupyter.herokuapp.com' # put your public IP Address here
c.NotebookApp.ip = '*'
c.NotebookApp.allow_remote_access = True
c.NotebookApp.open_browser = False
# ipython -c "from notebook.auth import passwd; passwd()"
c.NotebookApp.password = u'sha1:8da45965a489:86884d5b174e2f64e900edd129b5ef0d2f784a65'
c.NotebookApp.port = int(os.environ.get("PORT", 8888))
c.NotebookApp.allow_root = True
c.NotebookApp.allow_password_change = True
c.ConfigurableHTTPProxy.command = ['configurable-http-proxy', '--redirect-port', '80']
A few noteable setup items here:
c.NotebookApp.notebook_dir
I set asnbs
which means you should create a directory asnbs
for your default notebooks directory. In my case, jupyter will open right to this directory ignoring all others.c.NotebookApp.password
- this has to be a hashed password. To create a new one, just runipython -c "from notebook.auth import passwd; passwd()"
on your command line.c.NotebookApp.port
- Heroku sets this value in our environment variables thusint(os.environ.get("PORT", 8888))
as our default.
Test your new configuration locally with: jupyter notebook --config=./conf/jupyter.py
This will be how you can handle the ephemeral nature of Docker containers with Jupyter notebooks. Just create a new notebook called Load_Unload.ipynb
, and add the following:
mode = "unload"
if mode == 'unload':
# Zip all files in the current directory
!tar chvfz notebook.tar.gz *
elif mode == 'load:
# Unzip all files in the current directory
!!tar -xv -f notebook.tar.gz
This is the absolute minimum setup here. You might want to add additional items as needed. Certain packages, especially the ones for data science, require additional installs for our docker-based linux server.
FROM python:3.8.2-slim
ENV APP_HOME /app
WORKDIR ${APP_HOME}
COPY . ./
RUN pip install pip pipenv --upgrade
RUN pipenv install --skip-lock --system --dev
CMD ["./scripts/entrypoint.sh"]
The most noteable part of this all is that (1) I'm using
pipenv
locally and in docker and (2) I both installpipenv
and runpipenv install --system
to install all pipenv dependancies to the entire docker container (instead of in a virtual environment within the container as well).
I perfer using a entrypoint.sh
script for the CMD
in Dockerfiles.
#!/bin/bash
/usr/local/bin/jupyter notebook --config=./conf/jupyter.py
docker build -t cfe-jupyter -f Dockerfile .
docker run --env PORT=8888 -it -p 8888:8888 cfe-jupyter
heroku create cfe-jupyter
- Change
cfe-jupyter
to your app name
heroku container:login
heroku container:push web
heroku container:release web
web
is the default for ourDockerfile
.- On the commands above, you might have to append
-a <your-app-name>
like `heroku container:push web -a cfe-jupyter
heroku open
This should allow you to open up your project.
FROM python:3.8.2-slim
ENV APP_HOME /app
WORKDIR ${APP_HOME}
COPY . ./
RUN pip install pip pipenv --upgrade
RUN pipenv install --skip-lock --system --dev
CMD ["./scripts/entrypoint.sh"]
[[source]]
name = "pypi"
url = "https://pypi.org/simple"
verify_ssl = true
[dev-packages]
[packages]
jupyter = "*"
[requires]
python_version = "3.8"
docker build -t cfe-jupyter -f Dockerfile .
docker run --env PORT=8888 -it -p 8888:8888 cfe-jupyter
heroku container:push web
heroku container:release web
#!/bin/bash
/usr/local/bin/jupyter notebook --config=./conf/jupyter.py
import os
c = get_config()
# Kernel config
c.IPKernelApp.pylab = 'inline' # if you want plotting support always in your notebook
# Notebook config
c.NotebookApp.notebook_dir = 'nbs'
c.NotebookApp.allow_origin = u'cfe-jupyter.herokuapp.com' # put your public IP Address here
c.NotebookApp.ip = '*'
c.NotebookApp.allow_remote_access = True
c.NotebookApp.open_browser = False
# ipython -c "from notebook.auth import passwd; passwd()"
c.NotebookApp.password = u'sha1:8da45965a489:86884d5b174e2f64e900edd129b5ef0d2f784a65'
c.NotebookApp.port = int(os.environ.get("PORT", 8888))
c.NotebookApp.allow_root = True
c.NotebookApp.allow_password_change = True
c.ConfigurableHTTPProxy.command = ['configurable-http-proxy', '--redirect-port', '80']
mode = "unload"
if mode == 'unload':
# Zip all files in the current directory
!tar chvfz notebook.tar.gz *
elif mode == 'load:
# Unzip all files in the current directory
!!tar -xv -f notebook.tar.gz
You might need additional packages (like numpy
or pandas
or opencv
) in your project. Here's what you need to do in your Dockerfile
, (on our repo the final docker file is listed as Dockerfile.Bonus
) just update it to the following:
FROM python:3.8.2-slim
ENV APP_HOME /app
WORKDIR ${APP_HOME}
COPY . ./
# Install Ubuntu dependencies
# libopencv-dev = opencv dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
tzdata \
libopencv-dev \
build-essential \
libssl-dev \
libpq-dev \
libcurl4-gnutls-dev \
libexpat1-dev \
gettext \
unzip \
supervisor \
python3-setuptools \
python3-pip \
python3-dev \
python3-venv \
python3-urllib3 \
git \
&& \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Upgrade PIP
RUN pip install pip pipenv --upgrade
# sklearn opencv, numpy, and pandas
RUN pip install scikit-learn opencv-contrib-python numpy pandas
# tensorflow (including Keras)
RUN pip install tensorflow keras
# pytorch (cpu)
RUN apt-get update && apt-get -y install gcc mono-mcs && rm -rf /var/lib/apt/lists/*
RUN pip install torch==1.5.0+cpu torchvision==0.6.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
# fastai
RUN pip install fastai
# Project installs
RUN pipenv install --skip-lock --system --dev
CMD ["./scripts/entrypoint.sh"]