- Introduce main features of Keras
- Learn how simple and Pythonic is doing Deep Learning with Keras
- Understand how easy is to do basic and advanced DL models in Keras;
- Examples and Hand-on Excerises along the way.
https://github.com/leriomaggio/deep-learning-keras-euroscipy2016/
-
Setup (
10 mins
) -
Part I: Introduction (
~65 mins
)-
Intro to ANN (
~20 mins
)- naive pure-Python implementation
- fast forward, sgd, backprop
-
Intro to Theano (
15 mins
)- Model + SGD with Theano
-
Introduction to Keras (
30 mins
)- Overview and main features
- Theano backend
- Tensorflow backend
- Multi-Layer Perceptron and Fully Connected
- Examples with
keras.models.Sequential
andDense
- HandsOn: MLP with keras
- Examples with
- Overview and main features
-
-
Coffe Break (
30 mins
) -
Part II: Supervised Learning and Convolutional Neural Nets (
~45 mins
)-
Intro: Focus on Image Classification (
5 mins
) -
Intro to CNN (
25 mins
)- meaning of convolutional filters
- examples from ImageNet
- Meaning of dimensions of Conv filters (through an exmple of ConvNet)
- Visualising ConvNets
- HandsOn: ConvNet with keras
- meaning of convolutional filters
-
Advanced CNN (
10 mins
)- Dropout
- MaxPooling
- Batch Normalisation
-
Famous Models in Keras (likely moved somewhere else) (
10 mins
) (ref: https://github.com/fchollet/deep-learning-models) - VGG16 - VGG19 - ResNet50 - Inception v3- HandsOn: Fine tuning a network on new dataset
-
-
Part III: Unsupervised Learning (
10 mins
)- AutoEncoders (
5 mins
) - word2vec & doc2vec (gensim) &
keras.datasets
(5 mins
)Embedding
- word2vec and CNN
- Exercises
- AutoEncoders (
-
Part IV: Advanced Materials (
20 mins
)- RNN and LSTM (
10 mins
)- RNN, LSTM, GRU
- Example of RNN and LSTM with Text (
~10 mins
) -- Tentative - HandsOn: IMDB
- RNN and LSTM (
-
Wrap up and Conclusions (
5 mins
)
This tutorial requires the following packages:
- Python version 3.4+
- likely Python 2.7 would be fine, but who knows? :P
numpy
version 1.10 or later: http://www.numpy.org/scipy
version 0.16 or later: http://www.scipy.org/matplotlib
version 1.4 or later: http://matplotlib.org/pandas
version 0.16 or later: http://pandas.pydata.orgscikit-learn
version 0.15 or later: http://scikit-learn.orgkeras
version 1.0 or later: http://keras.iotheano
version 0.8 or later: http://deeplearning.net/software/theano/ipython
/jupyter
version 4.0 or later, with notebook support
(Optional but recommended):
pyyaml
hdf5
andh5py
(required if you use model saving/loading functions in keras)- NVIDIA cuDNN if you have NVIDIA GPUs on your machines. https://developer.nvidia.com/rdp/cudnn-download
The easiest way to get (most) these is to use an all-in-one installer such as Anaconda from Continuum. These are available for multiple architectures.
I'm currently running this tutorial with Python 3 on Anaconda
!python --version
Python 3.5.2
The quickest and simplest way to setup the environment is to use conda environment manager.
We provide in the materials a deep-learning.yml
that is complete and ready to use to set up your virtual environment with conda.
!cat deep-learning.yml
name: deep-learning
channels:
- conda-forge
- defaults
dependencies:
- accelerate=2.3.0=np111py35_3
- accelerate_cudalib=2.0=0
- bokeh=0.12.1=py35_0
- cffi=1.6.0=py35_0
- backports.shutil_get_terminal_size=1.0.0=py35_0
- blas=1.1=openblas
- ca-certificates=2016.8.2=3
- cairo=1.12.18=8
- certifi=2016.8.2=py35_0
- cycler=0.10.0=py35_0
- cython=0.24.1=py35_0
- decorator=4.0.10=py35_0
- entrypoints=0.2.2=py35_0
- fontconfig=2.11.1=3
- freetype=2.6.3=1
- gettext=0.19.7=1
- glib=2.48.0=4
- h5py=2.6.0=np111py35_6
- harfbuzz=1.0.6=0
- hdf5=1.8.17=2
- icu=56.1=4
- ipykernel=4.3.1=py35_1
- ipython=5.1.0=py35_0
- ipywidgets=5.2.2=py35_0
- jinja2=2.8=py35_1
- jpeg=9b=0
- jsonschema=2.5.1=py35_0
- jupyter_client=4.3.0=py35_0
- jupyter_console=5.0.0=py35_0
- jupyter_core=4.1.1=py35_1
- libffi=3.2.1=2
- libiconv=1.14=3
- libpng=1.6.24=0
- libsodium=1.0.10=0
- libtiff=4.0.6=6
- libxml2=2.9.4=0
- markupsafe=0.23=py35_0
- matplotlib=1.5.2=np111py35_6
- mistune=0.7.3=py35_0
- nbconvert=4.2.0=py35_0
- nbformat=4.0.1=py35_0
- ncurses=5.9=8
- nose=1.3.7=py35_1
- notebook=4.2.2=py35_0
- numpy=1.11.1=py35_blas_openblas_201
- openblas=0.2.18=4
- openssl=1.0.2h=2
- pandas=0.18.1=np111py35_1
- pango=1.40.1=0
- path.py=8.2.1=py35_0
- pcre=8.38=1
- pexpect=4.2.0=py35_1
- pickleshare=0.7.3=py35_0
- pip=8.1.2=py35_0
- pixman=0.32.6=0
- prompt_toolkit=1.0.6=py35_0
- protobuf=3.0.0b3=py35_1
- ptyprocess=0.5.1=py35_0
- pygments=2.1.3=py35_1
- pyparsing=2.1.7=py35_0
- python=3.5.2=2
- python-dateutil=2.5.3=py35_0
- pytz=2016.6.1=py35_0
- pyyaml=3.11=py35_0
- pyzmq=15.4.0=py35_0
- qt=4.8.7=0
- qtconsole=4.2.1=py35_0
- readline=6.2=0
- requests=2.11.0=py35_0
- scikit-learn=0.17.1=np111py35_blas_openblas_201
- scipy=0.18.0=np111py35_blas_openblas_201
- setuptools=25.1.6=py35_0
- simplegeneric=0.8.1=py35_0
- sip=4.18=py35_0
- six=1.10.0=py35_0
- sqlite=3.13.0=1
- terminado=0.6=py35_0
- tk=8.5.19=0
- tornado=4.4.1=py35_1
- traitlets=4.2.2=py35_0
- wcwidth=0.1.7=py35_0
- wheel=0.29.0=py35_0
- widgetsnbextension=1.2.6=py35_3
- xz=5.2.2=0
- yaml=0.1.6=0
- zeromq=4.1.5=0
- zlib=1.2.8=3
- cudatoolkit=7.5=0
- ipython_genutils=0.1.0=py35_0
- jupyter=1.0.0=py35_3
- libgfortran=3.0.0=1
- llvmlite=0.11.0=py35_0
- mkl=11.3.3=0
- mkl-service=1.1.2=py35_2
- numba=0.26.0=np111py35_0
- pycparser=2.14=py35_1
- pyqt=4.11.4=py35_4
- snakeviz=0.4.1=py35_0
- pip:
- backports.shutil-get-terminal-size==1.0.0
- certifi==2016.8.2
- cycler==0.10.0
- cython==0.24.1
- decorator==4.0.10
- h5py==2.6.0
- ipykernel==4.3.1
- ipython==5.1.0
- ipython-genutils==0.1.0
- ipywidgets==5.2.2
- jinja2==2.8
- jsonschema==2.5.1
- jupyter-client==4.3.0
- jupyter-console==5.0.0
- jupyter-core==4.1.1
- keras==1.0.7
- mako==1.0.4
- markupsafe==0.23
- matplotlib==1.5.2
- mistune==0.7.3
- nbconvert==4.2.0
- nbformat==4.0.1
- nose==1.3.7
- notebook==4.2.2
- numpy==1.11.1
- pandas==0.18.1
- path.py==8.2.1
- pexpect==4.2.0
- pickleshare==0.7.3
- pip==8.1.2
- prompt-toolkit==1.0.6
- protobuf==3.0.0b2
- ptyprocess==0.5.1
- pygments==2.1.3
- pygpu==0.2.1
- pyparsing==2.1.7
- python-dateutil==2.5.3
- pytz==2016.6.1
- pyyaml==3.11
- pyzmq==15.4.0
- qtconsole==4.2.1
- requests==2.11.0
- scikit-learn==0.17.1
- scipy==0.18.0
- setuptools==25.1.4
- simplegeneric==0.8.1
- six==1.10.0
- tensorflow==0.10.0rc0
- terminado==0.6
- theano==0.8.2
- tornado==4.4.1
- traitlets==4.2.2
- wcwidth==0.1.7
- wheel==0.29.0
- widgetsnbextension==1.2.6
prefix: /home/valerio/anaconda3/envs/deep-learning
conda env create -f deep-learning.yml # this file is for Linux channels.
If you're using a Mac OSX, we also provided in the repo the conda file
that is compatible with osx-channels
:
conda env create -f deep-learning-osx.yml # this file is for OSX channels.
source activate deep-learning
It is strongly suggested to enable conda forge in your Anaconda installation.
Conda-Forge is a github organisation containing repositories of conda recipies.
To add conda-forge
as an additional anaconda channel it is just required to type:
conda config --add channels conda-forge
- Create the
theanorc
file:
touch $HOME/.theanorc
- Copy the following content into the file:
[global]
floatX = float32
device = gpu # switch to cpu if no GPU is available on your machine
[nvcc]
fastmath = True
[lib]
cnmem=.90
More on theano documentation
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0rc0-cp35-cp35m-linux_x86_64.whl
pip install --ignore-installed --upgrade $TF_BINARY_URL
More on tensorflow documentation
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
import keras
Using Theano backend.
Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 4007)
import numpy
print('numpy:', numpy.__version__)
import scipy
print('scipy:', scipy.__version__)
import matplotlib
print('matplotlib:', matplotlib.__version__)
import IPython
print('iPython:', IPython.__version__)
import sklearn
print('scikit-learn:', sklearn.__version__)
numpy: 1.11.1
scipy: 0.18.0
matplotlib: 1.5.2
iPython: 5.1.0
scikit-learn: 0.17.1
import keras
print('keras: ', keras.__version__)
import theano
print('Theano: ', theano.__version__)
# optional
import tensorflow as tf
print('Tensorflow: ', tf.__version__)
keras: 1.0.7
Theano: 0.8.2
Tensorflow: 0.10.0rc0
You have two options to go through the material presented in this tutorial:
- Read (and execute) the material as iPython/Jupyter notebooks
- (just) read the material as (HTML) slides
In the first case, all you need to do is just execute ipython notebook
(or jupyter notebook
) depending on the version of iPython
you have installed on your machine
(jupyter
command works in case you have iPython 4.0.x
installed)
In the second case, you may simply convert the provided notebooks in HTML
slides and see them into your browser
thanks to nbconvert
.
Thus, move to the folder where notebooks are stored and execute the following command:
jupyter nbconvert --to slides ./*.ipynb --post serve
(Please substitute jupyter
with ipython
in the previous command if you have iPython 3.x
installed on your machine)
..you wanna do both (interactive and executable slides), I highly suggest to install the terrific RISE
ipython notebook extension: https://github.com/damianavila/RISE