/gpu_benchmark_goemotions

GPU Benchmark of the roberta-base-go_emotions model

Primary LanguagePython

GPU Benchmark GoEmotions

GPU and CPU Benchmark of the SamLowe/roberta-base-go_emotions model on a dataset of 10k random reddit comments, with pytorch (torch), ONNX (onnx), and O4-optimized FP16 ONNX versions (onnx-fp16).

Results

GPU insights:

  • The FP16 optimized model is up to 3X faster than torch. The gain depends on the GPU's specific FP32:FP16 ratio.
  • Base ONNX with CUDA is up to ~40% faster than torch. In theory, it can be optimized further with TensorRT.
  • The RTX 4090 is both 9X faster and 9X more expensive than the P40 (~$1800 vs ~$200 used) with FP16 ONNX, and only 4-5X faster with the other models.

Benchmark results

GPU results for the normal dataset
GPU/batch size 1 2 4 8 16 32
RTX 4090 (onnx-fp16) 1042.47 1042.47 2280.61 2551.59 2346.59 2346.59
RTX 4090 (onnx) 595.40 963.06 1232.12 1183.82 919.05 646.79
RTX 4090 (torch) 323.75 564.39 857.28 876.10 668.70 462.63
Tesla A10G (onnx-fp16) 600.00 879.20 1094.11 1082.87 943.09 767.02
Tesla A10G (onnx) 326.58 476.80 556.52 473.00 365.13 281.95
Tesla A10G (torch) 131.10 236.48 385.63 402.36 310.15 231.54
Tesla P40 (onnx-fp16) 263.18 286.72 255.36 200.65 148.89 108.92
Tesla P40 (onnx) 212.35 260.29 247.01 202.54 155.42 119.59
Tesla P40 (torch) 162.19 218.12 221.68 177.85 124.72 80.36

Table 1: GPU benchmark in messages/s for the normal dataset. Results may vary due to CPU tokenizer performance.

GPU results for the filtered (>200 characters) dataset
GPU/batch size 1 2 4 8 16 32
RTX 4090 (onnx-fp16) 856.65 1209.98 1438.25 1513.05 1395.42 1221.52
RTX 4090 (onnx) 494.28 673.83 740.03 610.06 472.35 382.72
RTX 4090 (torch) 302.38 476.46 548.32 450.82 338.37 273.01
Tesla A10G (onnx-fp16) 463.21 584.19 624.32 612.12 554.00 498.06
Tesla A10G (onnx) 255.55 312.77 290.70 239.00 200.90 176.20
Tesla A10G (torch) 126.82 209.08 245.60 205.70 167.53 141.90
Tesla P40 (onnx-fp16) 154.33 150.74 126.01 101.90 81.77 68.15
Tesla P40 (onnx) 138.25 142.59 125.45 103.09 86.84 75.27
Tesla P40 (torch) 117.11 128.19 113.87 88.03 64.88 47.76

Table 2: GPU benchmark in messages/s for the filtered dataset. Results may vary due to CPU tokenizer performance.

CPU results for the normal dataset
CPU/batch size @threads 1 @1T 2 @1T 4 @1T 1 @4T 2 @4T 4 @4T @max cores*

Table 3: CPU benchmark in messages/thread/s. *(@max cores) = (performance @1T)x(number of cores). It underestimates performance by disregarding hyperthreading, but overestimates by assuming same frequency at single-threaded and full load.

CPU results for the filtered dataset
CPU/batch size @threads 1 @1T 2 @1T 4 @1T 1 @4T 2 @4T 4 @4T @max cores*

Table 4: CPU benchmark in messages/thread/s. *(@max cores) = (performance @1T)x(number of cores). It underestimates performance by disregarding hyperthreading, but overestimates by assuming same frequency at single-threaded and full load.

Documentation

Requirements

The benchmark requires a working torch installation with CUDA support, as well as transformers, optimum, pandas and tqdm. These can be installed with

pip install transformers optimum[onnxruntime-gpu] pandas tqdm --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/

Alternatively, a conda environment bench with all the requirements can be created with

conda env create -f environment.yml
conda activate bench

Dataset

The dataset consists of 10K randomly sampled Reddit comments from 12/2005-03/2023, from the Pushshift data dumps. It excludes comments with empty, [deleted] or [removed] content. Two options are provided:

  • normal: As described above
  • filtered: contains only comments with >200 characters.

Usage

To run the benchmarks, use the run_benchmark.py script:

python run_benchmark.py --model [torch, onnx or onnx-fp16] --device [gpu or cpu]

Arguments:

  • model (required): Model backend to use, either "torch" for torch or "onnx" for ONNX Runtime.
  • device (required): Device type to use, either "gpu" or "cpu"
  • dataset: Dataset variant to use, either "normal" or "filtered" (default: "normal").
  • gpu: ID of the GPU to use (default: 0).
  • batches: Comma-separated batch sizes to run (default: "1,2,4,8,16,32").
  • threads: Specify the number of CPU threads to use (default: 1).

The scripts will output the number of messages processed per second for each batch size.