generalized multi-objective deep reinforcement learning algorithm
(1) General:
- Manually install tensorflow-gpu up to v. 1.14 (e.g.
conda install tensorflow-gpu=1.14
with python version <= 3.4.)
(2.a) For Deep-Sea Treasure Environment:
- Install ALE following https://github.com/garlicdevs/Fruit-API
- Install fruitAPI
(2.b) For Deep Drawing Environment:
- Prerequisite: abaqus (Tested on V. 6.14), Student version should be sufficient
- Install gym_fem following https://github.com/johannes-dornheim/Reinforce-FE
(3) General:
- install gTLO (
pip install .
in gTLO root folder)
experiments are managed by the script agents/morl_agent.py
and configured in ini files. To reproduce the results presented within the gTLO paper, the example configurations can be used as follows:
- gTLO:
python morl_agent.py --config ./preset_configs/DST_gTLO_250ksteps.ini
- outer-loop gTLQ:
python morl_agent.py --config ./preset_configs/DST_gTLO_outerloop_25kSteps.ini
- gLinear:
python morl_agent.py --config ./preset_configs/DST_gLinear_250kSteps.ini
- dTLQ (baseline agent): run
study_starter.py
from the FruitAPI fork https://github.com/johannes-dornheim/Fruit-API
- gTLO:
python morl_agent.py --config ./preset_configs/DeepDrawing_gTLO.ini
- gLinear:
python morl_agent.py --config ./preset_configs/DeepDrawing_gLinear.ini
@misc{https://doi.org/10.48550/arxiv.2204.04988,
author = {Dornheim, Johannes},
title = {gTLO: A Generalized and Non-linear Multi-Objective Deep Reinforcement Learning Approach},
publisher = {arXiv},
year = {2022},
doi = {10.48550/ARXIV.2204.04988},
url = {https://arxiv.org/abs/2204.04988},
}