/ConvNeXt_detection

detection with ConvNext backbone

Primary LanguagePythonApache License 2.0Apache-2.0

Object Detection with ConvNext backbone

This repo contains the supported code and configuration files to reproduce object detection results of ConvNext. It is based on facebookresearch/ConvNeXt/object_detection.

Updates

24/05/2022 Add train results

20/05/2022 Initial commits

Results and Fine-tuned Models

name Pretrained Model Method Lr Schd box mAP mask mAP #params FLOPs Fine-tuned Model
ConvNeXt-T ImageNet-1K Mask R-CNN 3x 46.2 41.6 48M 262G model

Usage

Installation

# virtual env

virtualenv convnext

source ./convext/bin/activate


git clone --recursive https://github.com/johnson-magic/ConvNeXt_detection.git

cd ConvNeXt_detection

pip3 install torch torchvision torchaudio

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.11.0/index.html

pip install -r requirements.txt

python setup.py develop

git clone https://github.com/NVIDIA/apex

cd apex

pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Please refer to get_started.md for installation and dataset preparation.

Inference

# single-gpu testing
python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE> --eval bbox segm

# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <DET_CHECKPOINT_FILE> <GPU_NUM> --eval bbox segm

Training

To train a detector with pre-trained models, run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --cfg-options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments] 

For example, to train a Cascade Mask R-CNN model with a Swin-T backbone and 8 gpus, run:

tools/dist_train.sh configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py 8 --cfg-options model.pretrained=<PRETRAIN_MODEL> 

Note: use_checkpoint is used to save GPU memory. Please refer to this page for more details.

Apex (optional):

We use apex for mixed precision training by default. To install apex, run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

If you would like to disable apex, modify the type of runner as EpochBasedRunner and comment out the following code block in the configuration files:

# do not use mmdet version fp16
fp16 = None
optimizer_config = dict(
    type="DistOptimizerHook",
    update_interval=1,
    grad_clip=None,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True,
)

Citing Swin Transformer

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Other Links

ConvNeXt: See ConvNext.

Swin Transformer: See Swin Transformer.