Developed by | Hyperparam |
Date of development | Feb 15, 2024 |
Validator type | Format |
Blog | |
License | Apache 2 |
Input/Output | Output |
A CSV validator for Guardrails AI.
This validator checks for various CSV issues such as mismatched column lengths, or mismatched quote delimiters.
- Dependencies:
- guardrails-ai>=0.4.0
$ guardrails hub install hub://hyparam/csv_validator
In this example, we apply the validator to a string output generated by an LLM.
# Import Guard and Validator
from guardrails.hub import CsvMatch
from guardrails import Guard
# Setup Guard
guard = Guard().use(
CsvMatch
)
guard.validate("name,email\njohn,john@example.com\njane,jane@example.com") # Validator passes
guard.validate("name,email\njohn\njane,jane@example.com") # Validator fails
In this example, we apply the validator to a string field of a JSON output generated by an LLM.
# Import Guard and Validator
from pydantic import BaseModel, Field
from guardrails.hub import CsvMatch
from guardrails import Guard
# Initialize Validator
val = CsvMatch()
# Create Pydantic BaseModel
class DbBackup(BaseModel):
db_name: str
data: str = Field(validators=[val])
# Create a Guard to check for valid Pydantic output
guard = Guard.from_pydantic(output_class=DbBackup)
# Run LLM output generating JSON through guard
guard.parse("""
{
"db_name": "USERS",
"data": "name,email\njohn,john@example.com\njane,jane@example.com"
}
""")
__init__(self, on_fail="noop")
-
Initializes a new instance of the CsvMatch class.
delimiter
(str): String delimiter for csv. Defaults to,
.on_fail
(str, Callable): The policy to enact when a validator fails. Ifstr
, must be one ofreask
,fix
,filter
,refrain
,noop
,exception
orfix_reask
. Otherwise, must be a function that is called when the validator fails.
Parameters
validate(self, value, metadata) -> ValidationResult
-
Validates the given `value` using the rules defined in this validator, relying on the `metadata` provided to customize the validation process. This method is automatically invoked by `guard.parse(...)`, ensuring the validation logic is applied to the input data.
- This method should not be called directly by the user. Instead, invoke
guard.parse(...)
where this method will be called internally for each associated Validator. - When invoking
guard.parse(...)
, ensure to pass the appropriatemetadata
dictionary that includes keys and values required by this validator. Ifguard
is associated with multiple validators, combine all necessary metadata into a single dictionary. value
(Any): The input value to validate.metadata
(dict): A dictionary containing metadata required for validation. No additional metadata keys are needed for this validator.
Note:
Parameters