/csv-validator

CSV validator for Guardrails AI

Primary LanguagePythonApache License 2.0Apache-2.0

Guardrails CSV Validator

csv-validator

apache license

Developed by Hyperparam
Date of development Feb 15, 2024
Validator type Format
Blog
License Apache 2
Input/Output Output

Description

A CSV validator for Guardrails AI.

This validator checks for various CSV issues such as mismatched column lengths, or mismatched quote delimiters.

Requirements

  • Dependencies:
    • guardrails-ai>=0.4.0

Installation

$ guardrails hub install hub://hyparam/csv_validator

Usage Examples

Validating string output via Python

In this example, we apply the validator to a string output generated by an LLM.

# Import Guard and Validator
from guardrails.hub import CsvMatch
from guardrails import Guard

# Setup Guard
guard = Guard().use(
    CsvMatch
)

guard.validate("name,email\njohn,john@example.com\njane,jane@example.com")  # Validator passes
guard.validate("name,email\njohn\njane,jane@example.com")  # Validator fails

Validating JSON output via Python

In this example, we apply the validator to a string field of a JSON output generated by an LLM.

# Import Guard and Validator
from pydantic import BaseModel, Field
from guardrails.hub import CsvMatch
from guardrails import Guard

# Initialize Validator
val = CsvMatch()

# Create Pydantic BaseModel
class DbBackup(BaseModel):
		db_name: str
		data: str = Field(validators=[val])

# Create a Guard to check for valid Pydantic output
guard = Guard.from_pydantic(output_class=DbBackup)

# Run LLM output generating JSON through guard
guard.parse("""
{
    "db_name": "USERS",
    "data": "name,email\njohn,john@example.com\njane,jane@example.com"
}
""")

API Reference

__init__(self, on_fail="noop")

    Initializes a new instance of the CsvMatch class.

    Parameters

    • delimiter (str): String delimiter for csv. Defaults to ,.
    • on_fail (str, Callable): The policy to enact when a validator fails. If str, must be one of reask, fix, filter, refrain, noop, exception or fix_reask. Otherwise, must be a function that is called when the validator fails.

validate(self, value, metadata) -> ValidationResult

    Validates the given `value` using the rules defined in this validator, relying on the `metadata` provided to customize the validation process. This method is automatically invoked by `guard.parse(...)`, ensuring the validation logic is applied to the input data.

    Note:

    1. This method should not be called directly by the user. Instead, invoke guard.parse(...) where this method will be called internally for each associated Validator.
    2. When invoking guard.parse(...), ensure to pass the appropriate metadata dictionary that includes keys and values required by this validator. If guard is associated with multiple validators, combine all necessary metadata into a single dictionary.

    Parameters

    • value (Any): The input value to validate.
    • metadata (dict): A dictionary containing metadata required for validation. No additional metadata keys are needed for this validator.