/ILAA

Evaluation of HMCA for Latent Biomarker Discovery

Primary LanguageHTMLGNU Lesser General Public License v3.0LGPL-3.0

ILAA and the ERT

This repository showcases the use of the FRESA.CAD::ILAA(), FRESA.CAD::IDeA() and the FRESA.CAD::getLatentCoefficients() for the discovery of latent variables from tabular data-sets.

Table of Contents

About {#about}

Examples of usage and applications of the FRESA.CAD::ILAA() and the associated exploratory residualization matrix (ERT).

This repository also holds the Source code of the Shiny App: ERT Calculator the source code is at the ILAA folder.

The repository folder structure is:

Folder Name Contents
Data Data sets used in the examples of this repository: Data
ILAA Shiny App code
Main The ILAA Tutorial Code
RMD The RMD scripts used for the validation and showcasing the ILAA method

Installation {#installation}

ILAA is part of the FRESA.CAD package. To use ILAA first install FRESA.CAD You can install the official release of the package from CRAN using:

install.packages("FRESA.CAD")

To install the development version from GitHub, use:

# Install 'devtools' package if you haven't already
install.packages("devtools")

# Install the package from GitHub
devtools::install_github("https://github.com/joseTamezPena/FRESA.CAD")

Usage {#usage}

After installation you can test ILAA on the iris data set.

library("FRESA.CAD") 
# The IRIS dataset
data('iris')  
##FCA Decorrelation at 0.25 threshold, pearson and fast estimation  
irisDecor <- ILAA(iris,thr=0.25)  
# Print the latent variables 
print(getLatentCoefficients(irisDecor))

# Lets model setosa using logistic regression
setosaData <- iris
setosaData$setosa <- 1.0*(as.character(iris$Species)=="setosa")
setosaData$Species <- NULL
setosaILAA <- ILAA(setosaData,thr=0.25)
modelSetosa <- glm(setosa~.,setosaILAA,family="binomial")
#The model cofficients in the ERT space
print(modelSetosa$coefficients)
#Get the observed Coefficients
observedCoef <- getObservedCoef(setosaILAA,modelSetosa)
#The model cofficients in the Observed space
print(observedCoef)

You can test ILAA using the ERT calculator at: https://josetamezpena.shinyapps.io/ILAA/

The app will compute the ERT transformation using the user-provided data set.

Also you can look at the output of the ILAA tutorial at: https://rpubs.com/J_Tamez/ILAA_Tutorial

Contributing {#contributing}

Contributions are welcome! If you'd like to contribute to this project, please follow these guidelines:

  • Fork the repository.
  • Create a new branch: git checkout -b feature/new-feature.
  • Make your changes and commit them: git commit -m 'Add new feature'.
  • Push to the branch: git push origin feature/new-feature.
  • Submit a pull request.

License {#license}

This project is licensed under the LGPL Licence 3.0 see the LICENSE file for details.

Contact {#contact}

Email: jose.tamezpena@tec.mx

Twitter: @tamezpena