- Zhi-Yi Chin: joycenerd.cs09@nycu.edu.tw
- Chieh-Ming Jiang: nax1016.cs10@nycu.edu.tw
Using PixelNeRF as 3D point cloud augmentation.
You can download a copy of all the files in this repository by cloning this repository:
git clone https://github.com/joycenerd/3Daug_pixel-nerf.git
You need to have Anaconda or Miniconda already installed in your environment. To install requirements:
cd pixel-nerf
conda env create -f environment.yml
Please check model-converter-python
in 3D_Augmentation repo
cd model-converter-python
python convert.py \
--data-root <data_dir> \
--output-root <save_dir>
Please refer to here for detail.
- Install Blender
wget https://mirror.clarkson.edu/blender/release/Blender2.90/blender-2.90.1-linux64.tar.xz tar -xvf blender-2.90-linux64.tar.xz
- Install python dependencies
cd $INSTALL_PATH/blender-2.82a-linux64/2.82/python/bin/ ./python3.7m -m ensurepip ./pip3 install numpy scipy ./pip3 install dotmap
- Run
render_shapenet.py
blender --background -noaudio --python render_shapenet.py -- --object chair --src_model_dir <obj_data_dir> --out_dir <save_dir> --val_frac 0.3 --test_frac 0.0 --split <train/val/test> --n_objects 1
python train/train.py -n srn_car_exp -c conf/exp/srn.conf -D <data_dir> --gpu_id '0 1' --dataset_format srn --save_dir <save_dir> -B 2 -V 3
python eval/eval.py -D <data_dir> --split test --output <save_dir_from_train> --write_depth --save_dir <save_dir> -n srn_chair_exp -P '22 25 28' --gpu_id 4
python train/train.py -n multi_obj_chair_exp_test -c conf/exp/multi_obj.conf -D <data_dir> --gpu_id=5 --save_dir <save_dir> --dataset_format multi_obj -V 10
python eval/eval.py -D <data_dir> -n multi_obj_chair_exp -P "5 7 10" --multicat -O <save_dir_from_train> --split val --save_dir <save_dir> -c conf/exp/multi_obj.conf --gpu_id=7 --write_depth
We thank the authors of these repositories:
If you'd like to contribute, or have any suggestions, you can contact us at joycenerd.cs09@nycu.edu.tw or open an issue on this GitHub repository.
All contributions welcome! All content in this repository is licensed under the MIT license.