Scala DOM Types provides listings of Javascript HTML and SVG tags as well as their attributes, DOM properties, and CSS styles, including the corresponding type information.
"com.raquo" %% "domtypes" % "<version>" // JVM & SBT
"com.raquo" %%% "domtypes" % "<version>" // Scala.js 1.9.0+
Scala DOM Types is used by the following Scala.js UI libraries:
As well as by:
- Scala DOM Test Utils, a library that verifies that your DOM node / tree matches the spec
- Community
- Contributing
- Why use Scala DOM Types
- What about ScalaTags
- What about scala-js-dom
- Design Goals
- Documentation
- Related Projects
Please use Github issues for bugs, feature requests, as well as all kinds of discussions, including questions on usage and integrations. You can watch this project on Github to get issue updates if you're interested in following discussions.
Q: I want to add an element tag / attribute / prop / etc.
A: Awesome! Please open an issue, and we will either ask you to PR it, add it ourselves, or discuss why adding this particular key might not be a good idea.
So far we are focused on HTML5 attributes and read-writeable DOM props, but it doesn't have to stay that way. There is value in providing listings for popular non-standard attributes as well (e.g. autoCapitalize
, unSelectable
) but we haven't decided how to deal with those yet. Don't hesitate to trigger this discussion though.
The raw definitions that you need to update are found in the shared/main/.../defs folder. The sample code generated from those definitions is found in js/test/.../defs.
If making a PR, please make sure to run the GeneratorSpec
test locally, so that the sample generated code is updated before you commit.
Canonical use case: you're writing a Scala or Scala.js library that does HTML / DOM construction / manipulation and want to provide a type-safe API like this:
div(
zIndex := 9000,
h1(rel := "title", "Hello world"),
p(
backgroundColor := "red",
"Welcome to my fancy page!",
span(draggable := true, "Fancyness is important.")
),
button(onClick := doFancyThing, "Do Fancy Thing"),
a(href := "http://example.com", title := "foo", "Example")
)
Of course, your API doesn't need to look anything like this, that's just an example. Scala DOM Types doesn't actually provide the Tag.apply
and :=
methods that you'd need to make this example work.
If you do in fact want to create similar syntax, see guidelines for library authors below.
ScalaTags is a popular Scala library that contains DOM type definitions similar to what we have here. However, Scala DOM Types is different in a few ways:
-
More type safe. For example, in Scala DOM Types an
input
tag is linked to Scala.jsHTMLInputElement
class. This lets you provide exact types for the DOM nodes you create, so that you don't need to perform unsafe casts in your application code if you want to e.g. access thevalue
property on aninput
you created. Similarly, all attributes, properties and styles are linked to the types that they accept to prevent you from assigning incorrect values. -
More flexible. Scala DOM Types does not tell you how to define your attributes / props / styles / tags, or how to compose them together, and does not enforce any rendering paradigm. You are free to implement your own composition. I see that some projects fork ScalaTags just to get the type definitions without everything else. Scala DOM Types does not get in your way, eliminating the need for such forking.
-
Better representation of native DOM types. Scala DOM Types handles Reflected Attributes consistently, and uses Codecs to properly encode/decode DOM values.
There are some other differences, for example Scala DOM Types uses camelCase for attr / prop / style names because that is consistent with common Scala style.
The scala-js-dom project serves a very different purpose – it provides typed Scala.js interfaces to native Javascript DOM classes such as HTMLInputElement
. You can use those types when you already have instances of DOM elements, but you can not instantiate those types without using untyped methods like document.createElement
because that is the only kind of API that Javascript provides for this.
On the other hand, Scala DOM Types lets the consuming library create a type-safe representation of real JS DOM nodes or trees, and it is up to your library's code to instantiate real JS nodes from the provided description.
Oh, and Scala DOM Types does work on the JVM. Obviously you can't get native JS types there, but you can provide your own replacements for specific Scala.js types, or just not bother with such specificity at all.
The purpose of Scala DOM Types is to become a standard DOM types library used in Scala.js projects.
The most important type information must be encoded as Scala types. For example, DOM properties that only accept integers should be typed as such.
The types we provide will never be perfect. For example, MDN has this to say about the list
attribute:
The value must be the id of a element in the same document. [...] This attribute is ignored when the type attribute's value is hidden, checkbox, radio, file, or a button type.
A far as I know, encoding such constraints as Scala types would be very hard, if it's even possible at all.
This is not to say that we are content with the level of type safety we currently have in Scala DOM Types. Improvements are welcome as long as they provide significantly more value than burden to users of this library. This kind of thing is often subjective, so I suggest you open an issue for discussion first.
Scala DOM Types is a low level library that is used by other libraries. As such, its API should be unopinionated and focused solely on providing useful data about DOM elements / attributes / etc. to consuming libraries in a way that is easy for them to implement.
We achieve this with a code generation approach. Instead of providing Scala traits in a predefined format, we give you tools to generate such traits in your own library, with your desired data structures, types, naming conventions, etc.
You can also use the raw element / attribute / etc. data contained Scala DOM Types yourself, whether at compile time or at runtime.
We should provide a better API than the DOM if we can do that in a way that keeps usage discoverable and unsurprising.
Developers familiar with the DOM API should generally be able to discover the names of attributes / tags / etc. they need using IDE autocompletion (assuming they expect the names to match the DOM API). For example: forId
is a good name for the for
attribute. It avoids using a Scala reserved word, and it starts with for
like the original attribute, so it's easy to find. It also implies what kind of string is expected for a value (an id
of an element).
Within that constraint, we should also try to clean up the more insane corners of the DOM API.
- For example, the difference between
value
attribute vsvalue
property trips up even experienced developers all the time. Scala DOM Types on the other hand has adefaultValue
reflected attribute and avalue
property, which behave the way everyone would expect from the given names or from their knowledge of the DOM API. - For another example, enumerated attributes like
contentEditable
that in the DOM accept "true" / "false" or "on" / "off" or "yes" / "no" should be boolean attributes in Scala DOM Types.
All naming differences with the DOM API should be documented in the README file (see below). Type differences are generally assumed to be self-documenting.
You generally don't want to use Scala DOM Types directly as the end-user. If you just want to generate some HTML on the backend or something similarly simple, you might want to use ScalaTags instead, or create a new library for that based on Scala DOM Types using the guide below.
So, you're building a DOM manipulation library such as Laminar, Outwatch or ScalaJS-React (the former two use Scala DOM Types, the latter doesn't). This guide focuses on the Scala.js use case. Scala DOM Types is perfectly usable from the backend as well, but it will need more customization.
First off, if you're building such a library, you need to know quite a few things about how JS DOM works. Scala DOM Types is just a collection of type information, it's not an abstraction layer for the DOM. You're building the abstraction layer. We can't cover everything about JS DOM here, but we will touch on some of the nastier parts in the following sections.
-
Look at MouseEventPropDefs in Scala DOM Types – several of such listings contain all the data that this library offers. This particular file lists all the mouse-related events that you can handle in the DOM. We create such listings manually. See discussion in #87 and #47 for why we don't generate these listings from some official source.
-
The data in
MouseEventPropDefs
can be used as-is in certain cases, but typically we want to transform it into well typed Scala traits that look like GlobalEventProps. In fact, prior to #87, such typed traits were the only format in which Scala DOM Types offered its data. For example, here's the old MouseEventProps from Scala DOM Types version 0.16.0-RC3. As you can see, to make such a trait flexible enough for different libraries and runtimes, we had to use a lot of type params – not ideal, especially for end users who just want to see e.g. the type of events a certain key produces. -
The new version of Scala DOM Types relies on code generation to produce simple abstraction-free traits like GlobalEventProps, tailored for a specific UI library like Laminar. That
GlobalEventProps
file was in fact produced by this code generator as part of Scala DOM Types GeneratorSpec test, and its output is verified in CompileSpec.Previously, Scala DOM Types offered highly abstracted traits as a runtime dependency of libraries like Laminar. Now, Laminar uses Scala DOM Types at compile time only, generating similar traits at compile time.
In Laminar, the code generation is done in DomDefsGenerator. As you see, the generator is customized with the names of Laminar's own types, package names, and desired folder structure. See Laminar's build.sbt and project/build.sbt for the compile-time generator build setup.
You will need to create a similar generator setup for your library.
-
There are several ways to customize Scala DOM Types code generation. Simpler ones first:
-
Provide different params to
CanonicalGenerator
's constructor -
Provide different params to
CanonicalGenerator
'sgenerate*Trait
methods(Including by transforming the list of defs that you pass to them)
-
Instantiate
TraitGenerator
subclasses manually instead of callinggenerate*Trait
methods -
Override
CanonicalGenerator
's methods -
Extend individual
*TraitGenerator
classes, and override their methods -
Create your own generator, perhaps by extending
TraitGenerator
orSourceGenerator
Typical usage of Scala DOM Types should not require overly-involved customization effort. If your Scala.js use case seems unnecessarily hard to achieve, please let me know.
-
-
Provide the keys that are deliberately missing from Scala DOM Types
We deliberately do not include a small set of "complex" keys that UI libraries tend to have different opinions about, such as the
class
andstyle
HTML attributes. See the full list below. Your library needs to provide such keys itself, for example see ComplexHtmlKeys and ComplexSvgKeys in Laminar – those are not generated, but manually created. -
Provide the Codecs. These are used to translate between Scala values and DOM values. See codecs in Laminar. Your implementation will be almost identical, depending on whether you talk to the DOM directly or via some virtual DOM library with special needs. See below for more info on the codecs.
-
Provide concrete types for Tags, Attributes, etc., as well as their functionality (
apply
and:=
methods, etc.). The type representing StyleProp should extend theGlobalKeywords
generated style trait, or provide those keywords in some other way. -
Finally, create "the bundle". You've generated a bunch of well typed traits and created concrete types – now you need to instantiate a single object that will extend all those traits to expose all the keys like
div
,onClick
, etc. The actual implementation of this might vary based on your preferences and on how you configured the generator, but you can refer to the top of the Laminar.scala file. As you see, I separate HTML keys from SVG keys and ARIA keys to avoid name collisions and reduce IDE autocomplete pollution. You can choose to do this differently, but that will require some customization on your part. -
With the generator, you're adding comments derived from MDN content into your project – those comments are licensed under CC-BY-SA, so you need to add a corresponding notice to your project file (or customize code generation to not include the comments for every key). See the bottom of this README.
-
Follow the guide above to set up a generator in your project as explained above
-
There is no built-in support for
TypeTargetEvent
anymore – just native JS types.You can implement / customize that in your project if you wish, but this isn't useful enough IMO.
-
CSS styles now have support for unit helpers – e.g. extensions like
paddingTop.px
orwidth.calc("20px + 10%")
, however you need to implement all that behaviour, and copy-paste the unit traits into your code – see the units in Laminar for example.
HTML attributes and DOM properties are different things. As a prerequisite for this section, please read this StackOverflow answer first.
For more on this, read Section 2.6.1 of this DOM spec. Note that it uses the term "IDL attributes" to refer to what we call "DOM properties", and "Content attributes" to refer to what we here call "HTML attributes".
So with that knowledge, id
for example is a reflected attribute. Setting and reading it works exactly the same way regardless of whether you're using the HTML attribute id
, or the DOM property id
. Such reflected attributes live in ReflectedHtmlAttrs
trait, which lets you build either attributes or properties depending on what implementation of ReflectedHtmlAttrBuilder
you provide.
To keep you sane, Scala DOM Types reflected attributes also normalize the DOM API a bit. For example, there is no value
attribute in Scala DOM Types. There is only defaultValue
reflected attribute, which uses either the value
HTML attribute or the defaultValue
DOM property depending on how you implement ReflectedHtmlAttrBuilder
. This is because that attribute and that property behave the same even though they're named differently in the DOM, whereas the value
DOM property has different behaviour (see the StackOverflow answer linked above). A corresponding HTML attribute with such behaviour does not exist, so in Scala DOM Types the value
prop is defined in trait Props
. It is not an attribute, nor is it a reflected attribute.
Reflected attributes may behave slightly differently depending on whether you implement them as props or attributes. For example, in HTML5 the cols
reflected attribute has a default value of 20
. If you read the col
property from an empty <textarea>
element, you will get 20
. However, if you try to read the attribute col
, you will get nothing because the attribute was never explicitly set.
Note that Javascript DOM performs better for reading/writing DOM props than reading/writing HTML attributes.
Scala DOM Types provides some normalization of the native HTML / DOM API, which is crazy in places.
For example, there are a few ways to encode a boolean value into an HTML attribute:
- As presence of the attribute – if attribute is present,
true
, elsefalse
. - As string "true" for true, or "false" for false
- As string "yes" for true, or "no" for false.
Which one of those you need to use depends on the attribute. For example, attribute disabled
needs option #1, but attribute contenteditable
needs option #2. And then there are DOM Properties (as opposed to HTML Attributes) where booleans are encoded as actual booleans.
Similarly, numbers are encoded as strings in attributes, with no such conversion when working with properties.
Scala DOM Types coalesces all these differences using codecs. When implementing a function that builds an attribute, you get provided with the attribute's name (key), datatype, and a codec that knows how to encode / decode that datatype into a value that should be passed to Javascript's native DOM API.
For example, the codecs for the three boolean options above are BooleanAsPresence
, BooleanAsTrueFalseString
, and BooleanAsYesNoString
.
Scala DOM Types provides a reference implementation of the codecs. Since you only use Scala DOM Types at compile time, you should copy-paste that implementation into your own library, instead of trying to load Scala DOM Types as a runtime dependency.
Properties like className
often require special handling in consuming libraries. For example, instead of a String
based interface, you might want to offer a Seq[String]
based one for className
. Because there is little to standardize on, Scala DOM Types deliberately does not provide those keys anymore. You need to add them to your library manually.
List of complex keys:
class
,role
,rel
,style
HTML attributesdata-*
HTML attributesclass
andrel
SVG attributes
Although each library using Scala DOM Types is free to generate whatever code it wants, we provide a canonical scalaName
for every key that we recommend using. It is sometimes different from the native DOM name (domName
).
Here is what the DOM attributes / props / etc. are called in scalaName
:
- All
scalaName
identifiers are camelCased for consistency with conventional Scala style, e.g.datalist
domName translates todataList
scalaName.
value
attribute is nameddefaultValue
because native HTML naming is misleading and confusing (example)- Note that the
value
property retains its name
- Note that the
checked
attribute is nameddefaultChecked
for the same reason- Note that the
checked
property retains its name
- Note that the
selected
attribute is nameddefaultSelected
for the same reason- Note that the
selected
property retains its name
- Note that the
for
attribute andhtmlFor
property are available as reflected attributeforId
for consistency and to avoid Scala reserved wordid
reflected attribute is namedidAttr
,max
attribute ismaxAttr
,min
isminAttr
, andstep
isstepAttr
to free up good names for end user codename
attribute is namednameAttr
to free up a good nameoffset
andresult
SVG attributes are namedoffsetAttr
andresultAttr
respectively to free up good names for end user codeloading
reflected HTML attribute is namedloadingAttr
to avoid using a good namecontent
attribute is namedcontentAttr
to avoid using a common nameform
attribute is namedformId
to avoid conflict withform
taglabel
attribute is namedlabelAttr
to avoid conflict withlabel
tagheight
attribute is namedheightAttr
to avoid conflict withheight
CSS propertywidth
attribute is namedwidthAttr
to avoid conflict withwidth
CSS propertylist
attribute is namedlistId
for clarity and consistencycontextmenu
attribute is namedcontextMenuId
for clarity and consistency
content
prop is namedcontentCss
to avoid using a common name
- Many tag names have a "Tag" suffix, usually to free up good names for end user code, or avoid some conflict, e.g.:
html
->htmlRootTag
,style
->styleTag
,link
->linkTag
,param
->paramTag
,map
->mapTag
,title
->titleTag
, etc.
- Attribute
type
==typ
==tpe
to avoid Scala reserved word
Certain special keys are not defined in Scala DOM Types, and are left for the consuming library to define. Of those, typically:
class
attribute is namedclassName
and aliased ascls
- the
style
attribute is namedstyleAttr
- Laminar – Reactive UI library based on Scala DOM Types
- Scala DOM TestUtils – Test that your Javascript DOM nodes match your expectations
Nikita Gazarov – @raquo
Scala DOM Types is provided under the MIT license.
Files in the defs
directory contain listings of DOM element tags, attributes, props, styles, etc. – Those were originally adapted from Li Haoyi's ScalaTags, which is also MIT licensed.
Comments pertaining to individual DOM element tags, attributes, properties and event properties, as well as CSS properties and their special values / keywords, are taken or derived from content created by Mozilla Contributors and are licensed under Creative Commons Attribution-ShareAlike license (CC-BY-SA), v2.5.