An API/Schema registry - stores and retrieves APIs and Schemas.
This project supports several build configuration options that affect the produced executables.
By default, mvn clean install
produces an executable JAR with the dev Quarkus configuration profile enabled, and in-memory persistence implementation.
Apicurio Registry supports 3 persistence implementations:
- in-memory
- Kafka
- JPA.
If you enable one, a separate set of artifacts is produced with the persistence implementation available.
Additionally, there are 2 main configuration profiles:
- dev - suitable for development, and
- prod - for production environment.
-Pkafka
enables a build ofstorage/kafka
module and producesapicurio-registry-storage-kafka-<version>-all.zip
.-Pjpa
enables a build ofstorage/jpa
module and producesapicurio-registry-storage-jpa-<version>-all.zip
. This artifact usesH2
driver in dev mode, andPostgreSQL
driver in prod mode.-Pprod
enables Quarkus's prod configuration profile, which uses configuration options suitable for a production environment, e.g. a higher logging level.-Pnative
(experimental) builds native executables. See Building a native executable.-Ddocker
(experimental) builds docker images. Make sure that you have the docker service enabled and running. If you get an error, trysudo chmod a+rw /var/run/docker.sock
.
The following parameters are available for executable files:
- In the dev mode, the application expects a H2 server running at
jdbc:h2:tcp://localhost:9123/mem:registry
. - In the prod mode, you have to provide connection configuration for a PostgreSQL server as follows:
Option | Command argument | Env. variable |
---|---|---|
Data Source URL | -Dquarkus.datasource.url |
QUARKUS_DATASOURCE_URL |
DS Username | -Dquarkus.datasource.username |
QUARKUS_DATASOURCE_USERNAME |
DS Password | -Dquarkus.datasource.password |
QUARKUS_DATASOURCE_PASSWORD |
To see additional options, visit:
- In the dev mode, the application expects a Kafka broker running at
localhost:9092
. - In the prod mode, you have to provide an environment variable
KAFKA_BOOTSTRAP_SERVERS
pointing to Kafka brokers
Kafka storage implementation uses the following Kafka API / architecture
- Storage producer to forward REST API HTTP requests to Kafka broker
- Storage consumer to handle previously sent REST API HTTP requests as Kafka messages
- Snapshot producer to send current state's snapshot to Kafka broker
- Snapshot consumer for initial (at application start) snapshot handling
We already have sensible defaults for all these things, but they can still be overridden or added by adding appropriate properties to app's configuration. The following property name prefix must be used:
- Storage producer: registry.kafka.storage-producer.
- Storage consumer: registry.kafka.storage-consumer.
- Snapshot producer: registry.kafka.snapshot-producer.
- Snapshot consumer: registry.kafka.snapshot-consumer.
We then strip away the prefix and use the rest of the property name in instance's Properties.
e.g. registry.kafka.storage-producer.enable.idempotence=true --> enable.idempotence=true
For the actual configuration options check (although best config docs are in the code itself):
To help setup development / testing environment for the module, see kafka_setup.sh script. You just need to have KAFKA_HOME env variable set, and script does the rest.
Streams storage implementation goes beyond plain Kafka usage and uses Kafka Streams to handle storage in a distributed and fault-tolerant way.
- In the dev mode, the application expects a Kafka broker running at
localhost:9092
. - In the prod mode, you have to provide an environment variable
KAFKA_BOOTSTRAP_SERVERS
pointing to Kafka brokers andAPPLICATION_ID
to name your Kafka Streams application
Both modes require 2 topics: storage topic and globalId topic. This is configurable, by default we use storage-topic and global-id-topic names.
Streams storage implementation uses the following Kafka (Streams) API / architecture
- Storage producer to forward REST API HTTP requests to Kafka broker
- Streams input KStream to handle previously sent REST API HTTP requests as Kafka messages
- Streams KStream to handle input's KStream result
- Both KStreams use KeyValueStores to keep current storage state
The two KeyValueStores keep the following structure:
- storage store: <String, Str.Data> -- where the String is artifactId and Str.Data is whole artifact info: content, metadata, rules, etc
- global id store: <Long, Str.Tuple> -- where the Long is unique globalId and Str.Tuple is a <artifactId, version> pair
We use global id store to map unique id to <artifactId, version> pair, which also uniquely identifies an artifact. The data is distributed among node's stores, where we access those remote stores based on key distribution via gRPC.
We already have sensible defaults for all these things, but they can still be overridden or added by adding appropriate properties to app's configuration. The following property name prefix must be used:
- Storage producer: registry.streams.storage-producer.
- Streams topology: registry.streams.topology.
We then strip away the prefix and use the rest of the property name in instance's Properties.
e.g. registry.streams.topology.replication.factor=1 --> replication.factor=1
For the actual configuration options check (although best config docs are in the code itself):
To help setup development / testing environment for the module, see streams_setup.sh script. You just need to have KAFKA_HOME env variable set, and script does the rest.
The same options are available for the docker containers, but only in the form of environment variables (The command line parameters are for the java
executable and at the moment it's not possible to pass them into the container).
Run Apicurio Registry with Postgres:
-
Compile using
mvn clean install -DskipTests -Pprod -Pjpa -Ddocker
-
Then create a docker-compose file
test.yml
:
version: '3.1'
services:
postgres:
image: postgres
environment:
POSTGRES_USER: apicurio-registry
POSTGRES_PASSWORD: password
app:
image: apicurio/apicurio-registry-jpa:1.0.0-SNAPSHOT
ports:
- 8080:8080
environment:
QUARKUS_DATASOURCE_URL: 'jdbc:postgresql://postgres/apicurio-registry'
QUARKUS_DATASOURCE_USERNAME: apicurio-registry
QUARKUS_DATASOURCE_PASSWORD: password
- Run
docker-compose -f test.yml up