Official Tensorflow implementation for "Improving Adversarial Transferability via Neuron Attribution-based Attacks" (CVPR 2022).
Improving Adversarial Transferability via Neuron Attribution-Based Attacks (CVPR 2022)
- Python 3.6.8
- Keras 2.2.4
- Tensorflow 1.14.0
- Numpy 1.16.2
- Pillow 6.0.0
- Scipy 1.2.1
You should download the pretrained models from ( https://github.com/tensorflow/models/tree/master/research/slim, and https://github.com/tensorflow/models/tree/archive/research/adv_imagenet_models) before running the code. Then place these model checkpoint files in ./models_tf
.
-
NAA.py
: the implementation for NAA attack. -
attacks.py
: the implementation for NAA attack and baseline attacks (NRDM, FDA, FIA). -
verify.py
: the code for evaluating generated adversarial examples on different models.
-
inception_v3: InceptionV3/InceptionV3/Mixed_5b/concat
-
inception_v4: InceptionV4/InceptionV4/Mixed_5e/concat
-
inception_resnet_v2: InceptionResnetV2/InceptionResnetV2/Conv2d_4a_3x3/Relu
-
resnet_v2_152: resnet_v2_152/block2/unit_8/bottleneck_v2/add
- NAA
python NAA.py --model_name inception_v3 --attack_method NAA --layer_name InceptionV3/InceptionV3/Mixed_5b/concat --ens 30 --output_dir ./adv/NAA/
- NAA-PD
python NAA.py --model_name inception_v3 --attack_method NAAPIDI --layer_name InceptionV3/InceptionV3/Mixed_5b/concat --ens 30 --amplification_factor 2.5 --gamma 0.5 --Pkern_size 3 --prob 0.7 --output_dir ./adv/NAAPIDI/
- PIM:
python NAA.py --model_name inception_v3 --attack_method PIM --amplification_factor 2.5 --gamma 0.5 --Pkern_size 3 --output_dir ./adv/PIM/
- NRDM
python attacks.py --model_name inception_v3 --attack_method NRDM --layer_name InceptionV3/InceptionV3/Mixed_5b/concat --output_dir ./adv/NRDM/
Attack methods have different parameter setting for different source models, and the detailed setting can be found in our paper.
python verify.py --ori_path ./dataset/images/ --adv_path ./adv/NAA/
If you find this work is useful in your research, please consider citing:
@inproceedings{zhang2022improving,
title={Improving adversarial transferability via neuron attribution-based attacks},
author={Zhang, Jianping and Wu, Weibin and Huang, Jen-tse and Huang, Yizhan and Wang, Wenxuan and Su, Yuxin and Lyu, Michael R},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={14993--15002},
year={2022}
}
Code refer to: Feature Importance-aware Attack