R studio docker container for scRNA-seq analyses build on bioconductor_docker:RELEASE_3_18 and R v4.3.2.
The Docker image is build in three layers:
- Installation of R packages on top of the bioconductor image: docker build -f Dockerfile_R . -t jsschrepping/r_docker:jss_R432_bioc318
- Installation of pip packages on top: docker build -f Dockerfile_pip . -t jsschrepping/r_docker:jss_R432_bioc318_pip
- Installation of conda packages on top: docker build -f Dockerfile_conda . -t jsschrepping/r_docker:jss_R432_bioc318_pip_conda
Installed R packages include:
-
DESeq2
-
tximport
-
limma
-
edgeR
-
complexheatmap
-
EnhancedVolcano
-
clusterProfiler
-
gage
-
monocle & monocle3
-
slingshot
-
SingleCellExperiment
-
Seurat v5.0.3
-
SeuratDisc
-
SingleR
-
Rcistarget
-
harmony
-
symphony
-
SoupX
-
AUcell
-
Ucell
-
DittoSeq
-
DiffBind
-
ChipSeeker
-
Signac
-
ArchR
-
Gviz
-
ChromVar
-
CytoExploreR
-
CytoML
-
FlowWorkspace
-
ggcyto
-
openCyto
-
cydar
-
Human Annotation databases (org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg38.knownGene, EnsDb.Hsapiens.v86)
and many more...
In addition, following python packages are installed to be used via reticulate:
- MACS3
- Cytosig
- scanpy
- scvelo
- cellrank
- scrublet
- CellphoneDB
- rapids packages for gpu usage
Installed versions of packages are documented in /logs/log_install_R.txt, /logs/log_install_pip.txt and /logs/log_install_conda.txt.
For instructions on how to launch RStudio in docker please read: https://ropenscilabs.github.io/r-docker-tutorial/02-Launching-Docker.html.