SchNetPack - Deep Neural Networks for Atomistic Systems
SchNetPack aims to provide accessible atomistic neural networks that can be trained and applied out-of-the-box, while still being extensible to custom atomistic architectures.
Major update! Breaking changes!
You can find the old SchNetPack 1.0 in the schnetpack1.0 branch
Features
- SchNet - an end-to-end continuous-filter CNN for molecules and materials [1-3]
- PaiNN - equivariant message-passing for molecules and materials [4]
- Output modules for dipole moments, polarizability, stress, and general response properties
- Modules for electrostatics, Ewald summation, ZBL repulsion
- GPU-accelerated molecular dynamics code incl. path-integral MD, thermostats, barostats
Requirements:
- python 3.8
- ASE
- numpy
- PyTorch 1.9
- hydra
Note: We recommend using a GPU for training the neural networks.
Installation
Install with pip
pip install schnetpack
Install from source
Clone the repository
git clone https://github.com/atomistic-machine-learning/schnetpack.git
cd schnetpack
Install requirements
pip install -r requirements.txt
Install SchNetPack
pip install .
You're ready to go!
Getting started
QM9 example
Under construction. For a first test, use:
spktrain experiment=qm9 model/representation=painn
Documentation
For the full API reference, visit our documentation.
If you are using SchNetPack in your research, please cite:
K.T. Schütt, P. Kessel, M. Gastegger, K. Nicoli, A. Tkatchenko, K.-R. Müller. SchNetPack: A Deep Learning Toolbox For Atomistic Systems. J. Chem. Theory Comput. 10.1021/acs.jctc.8b00908 arXiv:1809.01072. (2018)
Acknowledgements
CLI and hydra configs for PyTorch Lightning are adapted from this template:
References
-
[1] K.T. Schütt. F. Arbabzadah. S. Chmiela, K.-R. Müller, A. Tkatchenko.
Quantum-chemical insights from deep tensor neural networks. Nature Communications 8. 13890 (2017)
10.1038/ncomms13890 -
[2] K.T. Schütt. P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, K.-R. Müller.
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in Neural Information Processing Systems 30, pp. 992-1002 (2017) Paper -
[3] K.T. Schütt. P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, K.-R. Müller.
SchNet - a deep learning architecture for molecules and materials. The Journal of Chemical Physics 148(24), 241722 (2018) 10.1063/1.5019779 -
[4] K. T. Schütt, O. T. Unke, M. Gastegger
Equivariant message passing for the prediction of tensorial properties and molecular spectra. International Conference on Machine Learning (pp. 9377-9388). PMLR, Paper.