Integrates Yolact with ROS
- ROS(Kinetic)
- GPU supporting CUDA
- Set up a Python3 environment.
- Install Pytorch 1.0.1 (or higher) and TorchVision.
- Install some other packages:
# Cython needs to be installed before pycocotools pip install cython pip install opencv-python pillow pycocotools matplotlib
- Clone this repository and enter it:
git clone https://github.com/dbolya/yolact.git cd yolact
- If you'd like to train YOLACT, download the COCO dataset and the 2014/2017 annotations. Note that this script will take a while and dump 21gb of files into
./data/coco
.sh data/scripts/COCO.sh
- If you'd like to evaluate YOLACT on
test-dev
, downloadtest-dev
with this script.sh data/scripts/COCO_test.sh
Image Size | Backbone | FPS | mAP | Weights | |
---|---|---|---|---|---|
550 | Resnet50-FPN | 42.5 | 28.2 | yolact_resnet50_54_800000.pth | Mirror |
550 | Darknet53-FPN | 40.0 | 28.7 | yolact_darknet53_54_800000.pth | Mirror |
550 | Resnet101-FPN | 33.0 | 29.8 | yolact_base_54_800000.pth | Mirror |
700 | Resnet101-FPN | 23.6 | 31.2 | yolact_im700_54_800000.pth | Mirror |
To evalute the model, put the corresponding weights file in the ./weights
directory and run one of the following commands.
rosrun test eval.py --trained_model={weight 주소} --score_threshold=0.3 --top_k=100 --video_multiframe=2 --video=0
rosrun test test_sub.py
rosrun test eval.py --trained_model={weight 주소} --score_threshold=0.3 --top_k=100 --video_multiframe=2 --video=0