/huggingface-sagemaker-workshop-series

Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Primary LanguageJupyter NotebookMIT LicenseMIT

Hugging Face on Amazon SageMaker Workshop

Earlier this year we announced a strategic collaboration with Amazon to make it easier for companies to use Hugging Face in SageMaker, and ship cutting-edge Machine Learning features faster. We introduced new Hugging Face Deep Learning Containers (DLCs) to train Hugging Face Transformer models in Amazon SageMaker.

In addition to the Hugging Face Inference Deep Learning Containers, we created a new Inference Toolkit for SageMaker. This new Inference Toolkit leverages the pipelines from the transformers library to allow zero-code deployments of models, without requiring any code for pre- or post-processing. In the "Getting Started" section below, you will find two examples of how to deploy your models to Amazon SageMaker.

The Inference Toolkit also supports "bring your own code" methods, where you can override the default methods. You can learn more about "bring your own code" in the documentation here, or you can check out the sample notebook "deploy custom inference code to Amazon SageMaker".

This workshop series covers the following topics

Workshop 1: Getting Started with Amazon SageMaker: Training your first NLP Transformer model with Hugging Face and deploy it

  • Learn how to use Amazon SageMaker to train a Hugging Face Transformer model and deploy it afterwards
    • Prepare and upload a test dataset to S3
    • Prepare a fine-tuning script to be used with Amazon SageMaker Training jobs
    • Launch a training job and store the trained model into S3
    • Deploy the model after successful training

Getting Started

For this workshop you’ll get access to a temporary AWS Account already pre-configured with Amazon SageMaker Notebook Instances. Follow the steps in this section to login to your AWS Account and download the workshop material.

1. To get started navigate to - https://dashboard.eventengine.run/login

setup1

Click on Accept Terms & Login

2. Click on Email One-Time OTP (Allow for up to 2 mins to receive the passcode)

setup2

3. Provide your email address

setup3

4. Enter your OTP code

setup4

5. Click on AWS Console

setup5

6. Click on Open AWS Console

setup6

7. In the AWS Console click on Amazon SageMaker

setup7

8. Click on Notebook and then on Notebook instances

setup8

9. Create a new Notebook instance

setup9

10. Configure Notebook instances

  • Make sure to increase the Volume Size of the Notebook if you want to work with big models and datasets
  • Add your IAM_Role with permissions to run your SageMaker Training And Inference Jobs
  • Add the Workshop Github Repository to the Notebook to preload the notebooks: https://github.com/philschmid/huggingface-sagemaker-workshop-series.git

setup10

11. Open the Lab and select the right kernel you want to do and have fun!

Open the workshop you want to do (workshop_1_getting_started_with_amazon_sagemaker/) and select the pytorch kernel

setup11

Sources: