IPython notebook for training multilayer LSTM and RNN networks with pycaffe
Example of generated code after training on the Linux kernel for a couple hours:
#include "features.h"
#define SCHED_FEAT_NR]);
if (iter->nowname, next_list);
return 0;
}
static struct ftrace_ops global_ops;
static struct ftrace_ops global_ops;
static struct ftrace_ops global_ops;
static struct ftrace_ops gotax_trace;
}
static void rcu_torture_err_cb(struct rcu_head *rhp)
{
}
static void rcu_torture_err_cb(struct rcu_head *rhp)
{
}
static void sched_feat_disable(int i)
{
if (static_key_event_set_filter(&task->cpu_blocked);
}
if (is_simeans)
return trace_opt_init(&se->current);
return 0;
}
late_initcall(ftrace_test_read_fidst_cpus;
struct cwn_breat *current)
{
if (chip->subtree_control & (1 << ser_ops) {
pr_start = NULL = jiffies;
return 1;
}
static struct perf_event_context *parent, *next_parent;
struct perf_event_context *cpuct = CANCE_OTHE_SIZE_DABUL) {
if (cont.len) {
if (cont.owner == current);
}