rcan-tensorflow
Image Super-Resolution Using Very Deep Residual Channel Attention Networks Implementation in Tensorflow
Introduction
This repo contains my implementation of RCAN (Residual Channel Attention Networks).
Here're the proposed architectures in the paper.
All images got from the paper
Dependencies
- Python
- Tensorflow 1.x
- tqdm
- h5py
- scipy
- cv2
DataSet
| DataSet | LR | HR |
|---|---|---|
| DIV2K | 800 (192x192) | 800 (768x768) |
Usage
training
# hyper-paramters in config.py, you can edit them!
$ python3 train.py --data_from [img or h5]
testing
$ python3 test.py --src_image sample.png --dst_image sample-upscaled.png
Results
- OOM on my machine :(... I can't test my code, but maybe code runs fine.
| Example\Resolution | 192x192x3 image (sample) | 768x768x3 image (generated) |
|---|---|---|
| Example1 (X4 scaled) | ![]() |
![]() |
To-Do
- None
Author
HyeongChan Kim / @kozistr




