Do your training. We will take care of the statistics.
pip install git+https://github.com/justanhduc/neural-monitor
The basic usage in most cases will be
from neural_monitor import monitor as mon
# Tensorboard is turned on by default
mon.initialize(model_name='foo-model', print_freq=100, use_tensorboard=True)
...
def calculate_loss(pred, gt):
...
training_loss = ...
mon.plot('training loss', loss, smooth=.99, filter_outliers=True)
def calculate_acc(pred, gt):
accuracy = ...
mon.plot('training acc', accuracy, smooth=.99, filter_outliers=True)
...
for epoch in mon.iter_epoch(range(n_epochs)):
for data in mon.iter_batch(data_loader):
pred = net(data)
calculate_loss(pred, gt)
calculate_acc(pred, gt)
mon.imwrite('input images', data['images'], latest_only=True)
mon.dump('checkpoint.pt', {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
...
}, method='torch', keep=5) # keep only 5 latest checkpoints
...
For more details on Neural Monitor's functionality, please check the documentation.
This project is inspired by WGAN-GP.