/fastGPT

Fast GPT-2 inference written in Fortran

Primary LanguageFortranMIT LicenseMIT

fastGPT

The progression of GPT-2 codes from the original to "minimal", "nano" and "pico":

fastGPT is very similar to picoGPT (very small and readable), but it is also fast (see the Benchmarks section below). The speed and readability is achieved by using Fortran. I wrote a blog post introducing fastGPT.

fastGPT features:

  • Fast? ✅
  • Training code? ❌
  • Batch inference? ❌
  • top-p sampling? ❌ top-k? ❌ temperature? ❌ categorical sampling?! ❌ greedy? ✅
  • Readable? ✅
  • Small? ✅

A quick breakdown of each of the files:

  • gpt2.f90: the actual GPT-2 model and a decoder
  • main.f90: the main driver
  • create_model.py: downloads the TensorFlow model and converts to our own format (model.dat)
  • encode_input.py: encodes the text input into tokens (input file for gpt2)
  • Matmul implementations
    • linalg_f.f90 native Fortran
    • linalg_c.f90, linalg_accelerate.c macOS Accelerate Framework
  • pt.py: a reference script to run PyTorch (returns the same answer)

Build and Run

Install prerequisites:

mamba env create -f environment.yml
conda activate fastgpt

Configure and build:

FC=gfortran cmake .
make

Create the model.dat file from a given GPT-2 model. Supported sizes (and the corresponding names to be used in pt.py, and the approximate download size): "124M" (gpt2, 0.5GB), "355M" (gpt-medium, 1.5GB), "774M" (gpt-large, 3GB), "1558M" (gpt-xl, 6GB). This will download the model and cache it for subsequent runs:

python create_model.py --models_dir "models" --model_size "124M"

Create an input file:

python encode_input.py \
    "Alan Turing theorized that computers would one day become very powerful, but even he could not imagine" \
    -n 20

Run (requires model.dat and input.dat in the current directory):

./gpt2

Example Output

The above ./gpt2 command prints on Apple M1 Max:

$ ./gpt2
Loading the model...
    done.
Model parameters:
n_vocab = 50257
n_ctx   =  1024
n_embd  =   768
n_layer =    12
n_head  =    12

Input parameters:
n_seq                =  19
n_tokens_to_generate =  20

Input tokens:
 36235 39141 18765  1143   326  9061   561   530  1110  1716   845  3665    11   475   772   339   714   407  5967
Decoded input as text:
Alan Turing theorized that computers would one day become very powerful, but even he could not imagine
Running model...
           1         703
           2         484
           3         561
           4         307
           5        1498
           6         284
           7         466
           8         523
           9          13
          10         198
          11         198
          12           1
          13          40
          14         892
          15         326
          16         262
          17         749
          18        1593
          19        1517
          20         318
    done. Time:   0.795s
Output tokens:
   703   484   561   307  1498   284   466   523    13   198   198     1    40   892   326   262   749  1593  1517   318
Decoded output as text:
 how they would be able to do so.

"I think that the most important thing is

BLAS Implementation

You can choose which BLAS implementation to use for matmul using:

  • -DFASTGPT_BLAS=OpenBLAS: Use OpenBLAS
  • -DFASTGPT_BLAS=Accelerate: Use the macOS Accelerate Framework
  • -DFASTGPT_BLAS=Fortran: Use the default Fortran's intrinsic matmul

Benchmarks

On Apple M1 Max, inference of the above input file (20 tokens):

                                1 core  2 cores  4 cores  8 cores

fastGPT (Accelerate, fast_tanh) 0.288s
fastGPT (Accelerate)            0.299s
fastGPT (OpenBLAS)              0.837s  0.514s    0.341s   0.339s
PyTorch (OpenBLAS)              0.873s  0.539s    0.386s   0.392s
fastGPT (Accelerate, no cache)  0.717s
fastGPT (OpenBLAS, no cache)    2.343s  1.603s    1.209s   1.018s
PyTorch (OpenBLAS, no cache)    2.356s  1.520s    1.104s   0.997s
picoGPT (OpenBLAS, no cache)    2.427s  1.645s    1.272s   1.081s

Total run (includes loading the model and Python imports):

fastGPT (Accelerate, fast_tanh): 0.401s
picoGPT (8 cores):               3.445s
PyTorch (OpenBLAS, 4 cores):     4.867s

TODO