require:
# CUDA 10.1
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
step1 * 4:
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--total_data_num 10000\
--model resnet50 \
--dataset cifar10 \
--imbalance_ratio 150 \
--imbalance_order 8012964753 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--total_data_num 10000\
--model resnet50 \
--dataset cifar10 \
--imbalance_ratio 100 \
--imbalance_order 8012964753 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--total_data_num 10000\
--model resnet50 \
--dataset SVHN \
--imbalance_ratio 150 \
--imbalance_order 1724593680 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--total_data_num 10000\
--model resnet50 \
--dataset SVHN \
--imbalance_ratio 100 \
--imbalance_order 1724593680 \
make weight * 4:
CUDA_VISIBLE_DEVICES=0,1 \
python make_weight.py \
--model resnet50 \
--dataset cifar10 \
--dir_path ./save/SupCon/cifar10_models/SimCLR_cifar10_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_150.0_i_order_8012964753__total_data_10000 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python make_weight.py \
--model resnet50 \
--dataset cifar10 \
--dir_path ./save/SupCon/cifar10_models/SimCLR_cifar10_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_100.0_i_order_8012964753__total_data_10000 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python make_weight.py \
--model resnet50 \
--dataset SVHN \
--dir_path ./save/SupCon/SVHN_models/SimCLR_SVHN_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_150.0_i_order_1724593680__total_data_10000 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python make_weight.py \
--model resnet50 \
--dataset SVHN \
--dir_path ./save/SupCon/SVHN_models/SimCLR_SVHN_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_100.0_i_order_1724593680__total_data_10000 \
step2 * 8:
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon_second_step.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--model resnet50 \
--dataset cifar10 \
--dir_path ./save/SupCon/cifar10_models/SimCLR_cifar10_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_150.0_i_order_8012964753__total_data_10000 \
--step2_method 3 \
--scale 100 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon_second_step.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--model resnet50 \
--dataset cifar10 \
--dir_path ./save/SupCon/cifar10_models/SimCLR_cifar10_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_100.0_i_order_8012964753__total_data_10000 \
--step2_method 3 \
--scale 100 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon_second_step.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--model resnet50 \
--dataset SVHN \
--dir_path ./save/SupCon/SVHN_models/SimCLR_SVHN_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_150.0_i_order_1724593680__total_data_10000 \
--step2_method 3 \
--scale 100 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon_second_step.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--model resnet50 \
--dataset SVHN \
--dir_path ./save/SupCon/SVHN_models/SimCLR_SVHN_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_100.0_i_order_1724593680__total_data_10000 \
--step2_method 3 \
--scale 100 \
;\
\
\
\
\
\
\
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon_second_step.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--model resnet50 \
--dataset cifar10 \
--dir_path ./save/SupCon/cifar10_models/SimCLR_cifar10_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_150.0_i_order_8012964753__total_data_10000 \
--step2_method 1 \
--scale 0 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon_second_step.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--model resnet50 \
--dataset cifar10 \
--dir_path ./save/SupCon/cifar10_models/SimCLR_cifar10_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_100.0_i_order_8012964753__total_data_10000 \
--step2_method 1 \
--scale 0 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon_second_step.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--model resnet50 \
--dataset SVHN \
--dir_path ./save/SupCon/SVHN_models/SimCLR_SVHN_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_150.0_i_order_1724593680__total_data_10000 \
--step2_method 1 \
--scale 0 \
;\
CUDA_VISIBLE_DEVICES=0,1 \
python main_supcon_second_step.py --batch_size 512 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine \
--method SimCLR \
--epochs 1000 \
\
--model resnet50 \
--dataset SVHN \
--dir_path ./save/SupCon/SVHN_models/SimCLR_SVHN_resnet50_lr_0.5_decay_0.0001_bsz_512_temp_0.5_trial_0_cosine_warm_ir_100.0_i_order_1724593680__total_data_10000 \
--step2_method 1 \
--scale 0 \
model: [resnet50, VGG19]
dataset: [cifar100, cifar10, SVHN, tiny-imagenet-200]
imbalance order: [ascent, descent]
imbalance ratio: float (1~150)
total data num: int
dirpath: str
scale: int