jwieting/iclr2016
Python code for training all models in the ICLR paper, "Towards Universal Paraphrastic Sentence Embeddings". These models achieve strong performance on semantic similarity tasks without any training or tuning on the training data for those tasks. They also can produce features that are at least as discriminative as skip-thought vectors for semantic similarity tasks at a minimum. Moreover, this code can achieve state-of-the-art results on entailment and sentiment tasks.
Python
Issues
- 1
- 1
STS preprocessing script
#4 opened by rajicon - 0
File "paragram_sl999_small.txt"
#5 opened by shreyansh26 - 0
Missing attribute nonlinearity
#3 opened by prakhar-agarwal - 0
License?
#1 opened by georgedahl