Yeong Il Jang, Yoonsik Kim, and Nam Ik Cho
[Paper]
- Windows10 / Ubuntu 16.04
- Tensorflow1.12
- Python 3.6
Pretrained models for real noise and AWGN can be downloaded from followed link:
[Models]
python test.py
--imagepath : Path of test images
--savepath : Path of denoised images [default : './results/']
--model : Model checkpoint [real / AWGN] [default : './models/DPDN']
--add_noise : Add AWGN to test image [default : False]
--sigma : Standard deviation of AWGN (in [0 to 255] scale) [default : 25]
To denoise real noisy images,
python test.py --imagepath ./RNI15/ --savepath ./RNIdenoised/ --model ./models/DPDN
To denoise synthetic noisy images (AWGN),
python test.py --imagepath ./CBSD68/ --savepath ./CBSDdenoised/ --model ./models/AWGN --add_noise --simga 25
The denoised results for DPDN can be downloaded from followed links:
If you use the work released here for your research, please cite this paper:
@ARTICLE{9098102,
author={Y. I. {Jang} and Y. {Kim} and N. I. {Cho}},
journal={IEEE Signal Processing Letters},
title={Dual Path Denoising Network for Real Photographic Noise},
year={2020},
volume={27},
number={},
pages={860-864},}