This project is for Kaggle competiton Airbus Ship Detection Challenge.
It can help you quickly get a baseline solution, which is not bad.
Kaggle新手银牌(21st):Airbus Ship Detection 卫星图像分割检测
用Mask R-CNN训练自己的COCO数据集(Detectron)
辅助操作指南:Docker使用、镜像制作、Demo运行...
airbus
├─0_rle_to_coco 0、turn rle to coco
│ └─pycococreatortools
|
├─1_detectron_infer 1、files needed to be changed in detectron
| ├─dataset_catalog.py # ./detectron/datasets/dataset_catalog.py
│ ├─dummy_datasets.py # ./detectron/datasets/dummy_datasets.py
│ └─infer_airbus.py # ./tools/infer_simple.py
|
├─2_model 2、model and trainning log
│ ├─log log and visualization script
│ └─model configure file and .pkl (.pkl not be uploaded)
|
└─3_submit 3、generate your submission
└─csv reference .csv file
Run codes in ./0_rle_to_coco
. The guide has been written in markdwon file ./0_rle_to_coco/README.md
My codes are based on Detectron. So before using it, you need to install caffe2, which is quite troublesome. You can use my docker image, which is a little out of date, by the following command:
$ docker pull pascal1129/detectron:caffe2_cuda9_aliyun
In order to get the latest docker image, you can build the latest image with the official dockerfile: Detectron/docker/Dockerfile.
My codes are in the folder ./1_detectron_infer/
, you can replace the origin files in detectron with my codes.
my code | origin code needed to be replaced |
---|---|
dataset_catalog.py | ./detectron/datasets/dataset_catalog.py |
dummy_datasets.py | ./detectron/datasets/dummy_datasets.py |
infer_airbus.py | ./tools/infer_simple.py |
Confirm the .yaml file in ./2_model/model/
and start training. In addition, remember to use |tee
command, so you can get the log file like ./2_model/log/20181103.log
Run ./2_model/analyse_log.py
, then you can get the visualization picture.
Run ./3_submit/get_final_csv.py
.