/XuniVerse

xverse (XuniVerse) is collection of transformers for feature engineering and feature selection

Primary LanguageJupyter NotebookMIT LicenseMIT

I have fixed the errors that occurred due to function updates in the pandas and sklearn libraries. The errors can be seen in the screenshot below.

error

Error 1 - error caused by pandas update.

error2

Error 2 - error caused by sklearn update

xverse

xverse short for X uniVerse is a Python module for machine learning in the space of feature engineering, feature transformation and feature selection.

Currently, xverse package handles only binary target.

Installation

The package requires numpy, pandas, scikit-learn, scipy and statsmodels. In addition, the package is tested on Python version 3.5 and above.

To install the package, download this folder and execute:

python setup.py install

or from command line execute

pip install xverse

To install the development version, you can use

pip install --upgrade git+https://github.com/Sundar0989/XuniVerse

Still have issues installing. Please refer to the 'install_help' directory to walk you through steps.

Usage

XVerse module is fully compatible with sklearn transformers, so they can be used in pipelines or in your existing scripts. Currently, it supports only Pandas dataframes.

Example

Monotonic Binning (Feature transformation)

from xverse.transformer import MonotonicBinning

clf = MonotonicBinning()
clf.fit(X, y)

print(clf.bins)
{'age': array([19., 35., 45., 87.]),
 'balance': array([-3313.        ,   174.        ,   979.33333333, 71188.        ]),
 'campaign': array([ 1.,  3., 50.]),
 'day': array([ 1., 12., 20., 31.]),
 'duration': array([   4.        ,  128.        ,  261.33333333, 3025.        ]),
 'pdays': array([-1.00e+00, -5.00e-01,  1.00e+00,  8.71e+02]),
 'previous': array([ 0.,  1., 25.])}

Weight of Evidence (WOE) and Information Value (IV) (Feature transformation and Selection)

from xverse.transformer import WOE

clf = WOE()
clf.fit(X, y)

print(clf.woe_df.head()) #Weight of Evidence transformation dataset
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
|   | Variable_Name | Category           | Count | Event | Non_Event | Event_Rate          | Non_Event_Rate     | Event_Distribution  | Non_Event_Distribution | WOE                  | Information_Value   |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
| 0 | age           | (18.999, 35.0]     | 1652  | 197   | 1455      | 0.11924939467312348 | 0.8807506053268765 | 0.3781190019193858  | 0.36375                | 0.038742147481056366 | 0.02469286279236605 |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
| 1 | age           | (35.0, 45.0]       | 1388  | 129   | 1259      | 0.09293948126801153 | 0.9070605187319885 | 0.2476007677543186  | 0.31475                | -0.2399610313340142  | 0.02469286279236605 |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
| 2 | age           | (45.0, 87.0]       | 1481  | 195   | 1286      | 0.13166779203241052 | 0.8683322079675895 | 0.3742802303262956  | 0.3215                 | 0.15200725211484276  | 0.02469286279236605 |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
| 3 | balance       | (-3313.001, 174.0] | 1512  | 133   | 1379      | 0.08796296296296297 | 0.9120370370370371 | 0.255278310940499   | 0.34475                | -0.3004651512228873  | 0.06157421302850976 |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
| 4 | balance       | (174.0, 979.333]   | 1502  | 163   | 1339      | 0.1085219707057257  | 0.8914780292942743 | 0.31285988483685223 | 0.33475                | -0.06762854653574929 | 0.06157421302850976 |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
print(clf.iv_df) #Information value dataset
+----+---------------+------------------------+
|    | Variable_Name | Information_Value      |
+----+---------------+------------------------+
| 6  | duration      | 1.1606798895024775     |
+----+---------------+------------------------+
| 14 | poutcome      | 0.4618899274360784     |
+----+---------------+------------------------+
| 12 | month         | 0.37953277364723703    |
+----+---------------+------------------------+
| 3  | contact       | 0.2477624664660033     |
+----+---------------+------------------------+
| 13 | pdays         | 0.20326698063078097    |
+----+---------------+------------------------+
| 15 | previous      | 0.1770811514357682     |
+----+---------------+------------------------+
| 9  | job           | 0.13251854742728092    |
+----+---------------+------------------------+
| 8  | housing       | 0.10655553101753026    |
+----+---------------+------------------------+
| 1  | balance       | 0.06157421302850976    |
+----+---------------+------------------------+
| 10 | loan          | 0.06079091829519839    |
+----+---------------+------------------------+
| 11 | marital       | 0.04009032555607127    |
+----+---------------+------------------------+
| 7  | education     | 0.03181211694236827    |
+----+---------------+------------------------+
| 0  | age           | 0.02469286279236605    |
+----+---------------+------------------------+
| 2  | campaign      | 0.019350877455830695   |
+----+---------------+------------------------+
| 4  | day           | 0.0028156288525541884  |
+----+---------------+------------------------+
| 5  | default       | 1.6450124824351054e-05 |
+----+---------------+------------------------+

Apply this handy rule to select variables based on Information value

+-------------------+-----------------------------+
| Information Value | Variable Predictiveness     |
+-------------------+-----------------------------+
| Less than 0.02    | Not useful for prediction   |
+-------------------+-----------------------------+
| 0.02 to 0.1       | Weak predictive Power       |
+-------------------+-----------------------------+
| 0.1 to 0.3        | Medium predictive Power     |
+-------------------+-----------------------------+
| 0.3 to 0.5        | Strong predictive Power     |
+-------------------+-----------------------------+
| >0.5              | Suspicious Predictive Power |
+-------------------+-----------------------------+
clf.transform(X) #apply WOE transformation on the dataset

VotingSelector (Feature selection)

from xverse.ensemble import VotingSelector

clf = VotingSelector()
clf.fit(X, y)
print(clf.available_techniques)
['WOE', 'RF', 'RFE', 'ETC', 'CS', 'L_ONE']
clf.feature_importances_
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
|    | Variable_Name | Information_Value      | Random_Forest         | Recursive_Feature_Elimination | Extra_Trees          | Chi_Square           | L_One                   |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 0  | duration      | 1.1606798895024775     | 0.29100016518065835   | 0.0                           | 0.24336032789230097  | 62.53045588382914    | 0.0009834060765907017   |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 1  | poutcome      | 0.4618899274360784     | 0.05975563617541324   | 0.8149539108454378            | 0.07291945099022576  | 209.1788690088815    | 0.27884071686005385     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 2  | month         | 0.37953277364723703    | 0.09472524644853274   | 0.6270707318033509            | 0.10303345973615481  | 54.81011477300214    | 0.18763733424335785     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 3  | contact       | 0.2477624664660033     | 0.018358265986906014  | 0.45594899004325673           | 0.029325952072445132 | 25.357947712611868   | 0.04876094100065351     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 4  | pdays         | 0.20326698063078097    | 0.04927368012222067   | 0.0                           | 0.02738001362078519  | 13.808925800391403   | -0.00026932622581396677 |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 5  | previous      | 0.1770811514357682     | 0.02612886929056733   | 0.0                           | 0.027197295919351088 | 13.019278420681164   | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 6  | job           | 0.13251854742728092    | 0.050024353325485646  | 0.5207956132479409            | 0.05775450997836301  | 13.043319831003855   | 0.11279310830899944     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 7  | housing       | 0.10655553101753026    | 0.021126744587568032  | 0.28135643347861894           | 0.020830177741565564 | 28.043094016887064   | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 8  | balance       | 0.06157421302850976    | 0.0963543249575152    | 0.0                           | 0.08429423739161768  | 0.03720300378031974  | -1.3553979494412002e-06 |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 9  | loan          | 0.06079091829519839    | 0.008783347837152861  | 0.6414812505459246            | 0.013652849211750306 | 3.4361027026756084   | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 10 | marital       | 0.04009032555607127    | 0.02648832289940045   | 0.9140684291962617            | 0.03929791951230852  | 10.889749514307464   | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 11 | education     | 0.03181211694236827    | 0.02757205345952717   | 0.21529148795958114           | 0.03980467391633981  | 4.70588768051867     | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 12 | age           | 0.02469286279236605    | 0.10164634631051869   | 0.0                           | 0.08893247762137796  | 0.6818947945319156   | -0.004414426121909251   |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 13 | campaign      | 0.019350877455830695   | 0.04289312347011537   | 0.0                           | 0.05716486374991612  | 1.8596566731099653   | -0.012650844735972498   |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 14 | day           | 0.0028156288525541884  | 0.083859807784465     | 0.0                           | 0.09056623672332145  | 0.08687716739873641  | -0.00231307077371602    |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 15 | default       | 1.6450124824351054e-05 | 0.0020097121639531665 | 0.0                           | 0.004485553922176626 | 0.007542737902818529 | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
clf.feature_votes_
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
|    | Variable_Name | Information_Value | Random_Forest | Recursive_Feature_Elimination | Extra_Trees | Chi_Square | L_One | Votes |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 1  | poutcome      | 1                 | 1             | 1                             | 1           | 1          | 1     | 6     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 2  | month         | 1                 | 1             | 1                             | 1           | 1          | 1     | 6     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 6  | job           | 1                 | 1             | 1                             | 1           | 1          | 1     | 6     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 0  | duration      | 1                 | 1             | 0                             | 1           | 1          | 1     | 5     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 3  | contact       | 1                 | 0             | 1                             | 0           | 1          | 1     | 4     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 4  | pdays         | 1                 | 1             | 0                             | 0           | 1          | 0     | 3     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 7  | housing       | 1                 | 0             | 1                             | 0           | 1          | 0     | 3     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 12 | age           | 0                 | 1             | 0                             | 1           | 0          | 1     | 3     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 14 | day           | 0                 | 1             | 0                             | 1           | 0          | 1     | 3     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 5  | previous      | 1                 | 0             | 0                             | 0           | 1          | 0     | 2     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 8  | balance       | 0                 | 1             | 0                             | 1           | 0          | 0     | 2     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 13 | campaign      | 0                 | 0             | 0                             | 1           | 0          | 1     | 2     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 9  | loan          | 0                 | 0             | 1                             | 0           | 0          | 0     | 1     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 10 | marital       | 0                 | 0             | 1                             | 0           | 0          | 0     | 1     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 11 | education     | 0                 | 0             | 1                             | 0           | 0          | 0     | 1     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 15 | default       | 0                 | 0             | 0                             | 0           | 0          | 0     | 0     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+

Contributing

XuniVerse is under active development, if you'd like to be involved, we'd love to have you. Check out the CONTRIBUTING.md file or open an issue on the github project to get started.

References

https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html

https://medium.com/@sundarstyles89/variable-selection-using-python-vote-based-approach-faa42da960f0

Contributors

Alessio Tamburro (https://github.com/alessiot)