AlexNet: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
Colab notebook: https://colab.research.google.com/drive/1a1b_932EMueQXTrH5LAszh0x8VdVw3M-?usp=sharing
ZFNet: https://arxiv.org/abs/1311.2901
VGG16: https://arxiv.org/abs/1505.06798
ResNet: https://arxiv.org/abs/1704.06904
GoogLeNet: https://arxiv.org/abs/1409.4842
Inception: https://arxiv.org/abs/1512.00567
Xception: https://arxiv.org/abs/1610.02357
MobileNet: https://arxiv.org/abs/1704.04861
FCN: https://arxiv.org/abs/1411.4038
SegNet: https://arxiv.org/abs/1511.00561
UNet: https://arxiv.org/abs/1505.04597
PSPNet: https://arxiv.org/abs/1612.01105
DeepLab: https://arxiv.org/abs/1606.00915
ICNet: https://arxiv.org/abs/1704.08545
ENet: https://arxiv.org/abs/1606.02147
GAN: https://arxiv.org/abs/1406.2661
DCGAN: https://arxiv.org/abs/1511.06434
WGAN: https://arxiv.org/abs/1701.07875
Pix2Pix: https://arxiv.org/abs/1611.07004
CycleGAN: https://arxiv.org/abs/1703.10593
RCNN: https://arxiv.org/abs/1311.2524
Fast-RCNN: https://arxiv.org/abs/1504.08083
Faster-RCNN: https://arxiv.org/abs/1506.01497
Mask R-CNN: https://arxiv.org/abs/1703.06870
SSD: https://arxiv.org/abs/1512.02325
YOLO: https://arxiv.org/abs/1506.02640
YOLO9000: https://arxiv.org/abs/1612.08242
Playing Atari: https://arxiv.org/pdf/1312.5602v1.pdf
DocParser: https://arxiv.org/abs/1911.01702 (Mask R-CNN)
Binarized Neural Networks: https://papers.nips.cc/paper/6573-binarized-neural-networks
DreamCoder: https://arxiv.org/abs/2006.08381
Physics-based Human Motion Estimation and Synthesis from Videos: https://arxiv.org/abs/2109.09913
Practical Reinforcement Learning For MPC: https://arxiv.org/abs/2003.03200