/SegDiff

Primary LanguagePython

This is the official repository of the paper SegDiff: Image Segmentation with Diffusion Probabilistic Models

The code is based on Improved Denoising Diffusion Probabilistic Models.

Installation

Conda environment

To create the environment use the conda environment command

conda env create -f environment.yml

Project structure and data preparations

our project need to be arranged in the following format

segdiff/ # git clone the source code here

data/ # the root of the data folders
    Vaihingen/
    Medical/MoNuSeg/
    cityscapes_instances/

Vaihingen

download the dataset from link and unzip it's content (folder named buildings), execute the preprocess

datasets/preprocess_vaihingen.py --path building-folder-path 

Vaihingen dataset should have the following format

Vaihingen/
    full_test_vaih.hdf5
    full_training_vaih.hdf5

MonuSeg

general website of the challenge, download the dataset train and test sets.

launch the matlab code for preprocess

MonuSeg dataset should have the following format

MonuSeg/
    Test/
        img/
            XX.tif
        mask/
            XX.png
    Training/
        img/
            XX.tif
        mask/
            XX.png

Cityscapes

download cityscapes dataset with the splits from PolyRNN++, follow the instructions here for preparations

To get cityscapes_final_v5 annotations you can sign up to get PolygonRNN++ code here http://www.cs.toronto.edu/polyrnn/code_signup/ the cityscapes_final_v5 folder is inside the data folder

Cityscapes dataset should have the following format

cityscapes_instances/
    full/
        all_classes_instances.json
    train/
        all_classes_instances.json
    train_val/
        all_classes_instances.json
    val/
        all_classes_instances.json
    all_images.hdf5

Train and Evaluate

Execute the following commands (multi gpu is supported for training, set the gpus with CUDA_VISIBLE_DEVICES and -n for the actual number)

Training options:

# Training
--batch-size    Batch size
--lr            Learning rate

# Architecture
--rrdb_blocks       Number of rrdb blocks
--dropout           Dropout
--diffusion_steps   number of steps for the diffusion model

# Cityscapes
--class_name        name of class of cityscapes, options are ["bike", "bus", "person", "train", "motorcycle", "car", "rider"]
--expansion         boolean flag, for expansion setting or not

# Misc
--save_interval     interval for saving model weights

MonuSeg

Training script example:

CUDA_VISIBLE_DEVICES=0,1,2,3 mpiexec -n 4 image_train_diff_medical.py --rrdb_blocks 12 --batch_size 2 --lr 0.0001 --diffusion_steps 100

Evaluation script example:

CUDA_VISIBLE_DEVICES=0 mpiexec -n 1 python image_sample_diff_medical.py --model_path path-for-model-weights

Cityscapes

Training script example:

CUDA_VISIBLE_DEVICES=0,1 mpiexec -n 2 python image_train_diff_city.py --class_name "train" --expansion True --rrdb_blocks 15 --lr 0.0001 --batch_size 15 --diffusion_steps 100

Evaluation script example:

CUDA_VISIBLE_DEVICES=0 mpiexec -n 1 python image_sample_diff_city.py --model_path path-for-model-weights

Vaihingen

Training script example:

CUDA_VISIBLE_DEVICES=0,1 mpiexec -n 2 python image_train_diff_vaih.py --lr 0.0001 --batch_size 4 --dropout 0.1 --rrdb_blocks 6 --diffusion_steps 100

Evaluation script example:

CUDA_VISIBLE_DEVICES=0 mpiexec -n 1 python image_sample_diff_vaih.py --model_path path-for-model-weights

Citation

@article{amit2021segdiff,
  title={Segdiff: Image segmentation with diffusion probabilistic models},
  author={Amit, Tomer and Nachmani, Eliya and Shaharbany, Tal and Wolf, Lior},
  journal={arXiv preprint arXiv:2112.00390},
  year={2021}
}