/staggered_did_tutorial

2023年5月28日に日本経済学会春季大会にて開催されたチュートリアル・セッション(共催:日本学術会議 数量的経済・政策分析分科会)「DIDの計量経済手法の近年の展開」のサポートサイトとしてスライド資料(講義編・演習基礎編・演習応用編)、Stataコード、Rコードを提供しています.

Primary LanguageROtherNOASSERTION

Staggered DiD Tutorial

本Githubサイトは、2023年5月28日に日本経済学会春季大会にて開催されたチュートリアル・セッション(共催:日本学術会議 数量的経済・政策分析分科会)「DIDの計量経済手法の近年の展開」のサポートサイトとしてスライド資料(講義編・演習基礎編・演習応用編)、Stataコード、Rコードを提供しています.

Tutorials

Replication (Stata & R)

Stata

  1. Clone this repository
  2. Set the root directory in setup.do and run to install the packages
  3. Run simulation/1_gen_data.do-simulation/3_estimation.do
  4. Run emp_application/1_overviw.do-emp_application/3_estimation.do

Important Caveat

In the empirical part, we experienced that the computation of csdid (Callaway and Sant'Anna) crushed the computer system (not only the Stata application) with a RAM of 32GB or less. We strongly recommend you run it only if your computer has 64GB or larger RAM.

R

  1. Clone this repository
  2. Open the local repository as an R project (staggered_did_tutorial.Rproj)
  3. Run renv::restore() in the R console to install packages
  4. Run simulation/1_gen_data.R-simulation/3_estimation.R
  5. Run emp_application/1_overview.R-emp_application/3_estimation.R
  6. By default, benchmarks are not calculated. Set run_benchmark <- TRUE for it.

For docker-users, between the step 1 and 2, implement either

  • Rstudio: docker-compose up --build and open localhost:8787 in Browser
  • VSCode: Dev Containers "Rebuild and Reopen in Container"

License and Credits

スライド資料およびStataコードは小西祥文(慶應義塾大学)が作成,Rコードは研究補助として柳本和春さん(CEMFI)と梅谷隼人さん(神戸大学)に作成頂きました.教育・研究目的での利用は引用の上, 商用利用の場合は私(小西祥文)の許諾を得てからご利用下さい.

Tutorial slides and Stata codes are written by Yoshifumi Konishi (Keio Univ.), and R codes are written by Kazuharu Yanagimoto (CEMFI) and Hayato Umetani (Kobe Univ.). Source codes and data are under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License, see LICENSE.

Note: The data set used in Stata/R demonstrations (cicala_aer_2022_ready.dta) comes from Cicala (AER, 2022) under the CC BY-NC 4.0 License. The original data are hourly observations but are converted to daily-level observations by Yoshifumi Konishi.

References

Cicala, Steve. Hourly U.S. Electricity Load. Nashville, TN: American Economic Association [publisher], 2022. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2022-01-29. https://doi.org/10.3886/E146801V1