Authors: Dong-Kyum Kim1*, Sangyun Lee2*, and Hawoong Jeong1,3
* Equal contribution
1 Department of Physics, KAIST 2 School of Physics, KIAS 3 Center for Complex Systems, KAIST
This repo contains source code for the runs in Estimating entropy production in a stochastic system with odd-parity variables
Supported platforms: MacOS and Ubuntu, Python 3.7
Installation using Miniconda:
git clone https://github.com/kdkyum/odd_neep.git
cd odd_neep
conda create -y --name odd_neep python=3.7
conda activate odd_neep
pip install -r requirements.txt
To enable gpu usage, install gpu version torch
package from PyTorch.
- Training for Underdamped bead-spring model.
python main_ubs.py \
--save results/ubs/N2_m0-01_Tc1_seed0 \
--n_layer 2 \
--n_hidden 256 \
--N 2 \
--Tc 1 \
--Th 10 \
--m 0.01 \
--lr 1e-5 \
--wd 0 \
--dropout 0 \
--trj_num 10000 \
--trj_len 4000 \
--record_freq 400 \
--n_iter 100000 \
--seed 0
- Training for odd-parity Markov jump process.
python main_omj.py \
--save results/omj/c10_seed0 \
--n_layer 2 \
--n_hidden 256 \
--trj_len 10000 \
--trj_num 50 \
--N 10 \
--c 10 \
--lr 1e-5 \
--n_iter 10000 \
--record_freq 500 \
--batch_size 4096 \
--seed 0
Cite the following Bibtex.
@article{kim2021odd_neep,
title={Estimating entropy production in a stochastic system with odd-parity variables},
author={Dong-Kyum Kim and Sangyun Lee and Hawoong Jeong},
journal={arXiv preprint arXiv:2112.04681},
}
This project following the MIT license.