Simple PyTorch implementation of class-conditioned ODI generator based on pix2pix(cGAN).
Paper(arXiv): Omni-Directional Image Generation from Single Snapshot Image by Keisuke Okubo and Takao Yamanaka.
- numpy
- Torch
- Pillow
- Clone or download this repository.
- Download sample dataset(Google Drive).
- Unzip the zip file and place the
dataset
folder in the same location as theimplementation
folder.
class-conditioned-ODI-generator-pytorch/
+- implementation/
| +- train.py
| +- networks.py
| +- ...
+- dataset/
+- train/
| +- base/
| +- label/
+- test/
+- base/
+- label/
- Move to the implementation directory:
cd implementation
- For GPU, run the following command
python train.py --cuda
- For CPU, run the following command
python train.py
- Run with this argument:
--padding
# of epoch: --niter <int>
+ --niter_decay <int>
-
--niter <int>
: # of iter at starting learning rate. Default: 100 -
--niter_decay <int>
: # of iter to linearly decay learning rate to zero. Default: 0 -
--g_ch <int>
: Generator channels in first conv layer. Default: 128 -
--d_ch <int>
: Discriminator channels in first conv layer. Default: 128 -
--save_interval <int>
: Interval epoch of network weight saving. Default: 10 -
--graph_save_while_training
: If save current loss graph while training. Default: False
We thank to these developers:
- Implementation: pix2pix-pytorch by mrzhu-cool.
- Sample dataset: Using part of the SUN360 dataset by Jianxiong Xiao, Krista A. Ehinger, Aude Oliva, and Antonio Torralba (Massachusetts Institute of Technology).