/Binary-Calculation

Introduce your functions and application of Binary numbers by python

Primary LanguagePython

#Introduce your functions and application of Binary numbers.

  1. sum(A,B): return a string C which represent the sum of 2 numbers represented by strings A and B. For example: sum(’1100’,’1101’)=’11001’
  2. dif(A,B): return a string C which represent the different of 2 numbers represented by strings A and B. For example: dif(’101’,’100’)=’1’; if A<B return C=’error’
  3. prod(A,B): return a string C which represent the product of 2 numbers represented by strings A and B. For example: prod(’10’,’100’)=’1000’
  4. bitwiseAnd(A,B): return a string C which represent the bit by bit "and"of 2 strings of bits A and B. For example: bitwiseAnd(’101011’,’111101’)=’101001’ bitwiseAnd(’10’,’101’)=’0’
  5. bitwiseOr(A,B): return a string C which represent the bit by bit "or"of 2 strings of bits A and B. For example: bitwiseOr(’1100’,’10’)=’1110’
  6. bitwiseXor(A,B): return a string C which represent the bit by bit "Xor"of 2 strings of bits A and B. For example: bitwiseXor(’1000’,’1011’)=’11’
  7. bitwiseNot(A): return a string C which represent the bit by bit "Not"of string of bits A. For example: bitwiseNot(’1100’)=’11’ bitwiseNot(’111’)=’0’
  8. bitwiseLeftShift(A): return a string C which represent the left shifted string of bits A. For example: bitwiseLeftShift(’10010’)=’101’; bitwiseLeftShift(’11010’)=’10101’
  9. bitwiseRightShift(A): return a string C which represent the right shifted string of bits A. For example: bitwiseRightShift(’10011’)=’11001’
  10. bin2Hex(A): return a string C which represent the Hexadecimal form of A. For example: Bin2Hex(’10011’)=’13’; Bin2Hex(’10011111’)=’9F’;