/YOLO

An MIT rewrite of YOLOv9

Primary LanguagePythonMIT LicenseMIT

YOLO: Official Implementation of YOLOv9, YOLOv7

GitHub License WIP

PWC

Open In Colab Hugging Face Spaces

Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9.

TL;DR

  • This is the official YOLO model implementation with an MIT License.
  • For quick deployment: you can directly install by pip+git:
pip install git+https://github.com/WongKinYiu/YOLO.git
yolo task.data.source=0 # source could be a single file, video, image folder, webcam ID

Introduction

Installation

To get started using YOLOv9's developer mode, we recommand you clone this repository and install the required dependencies:

git clone git@github.com:WongKinYiu/YOLO.git
cd YOLO
pip install -r requirements.txt

Features

Tools pip ๐Ÿ HuggingFace ๐Ÿค— Docker ๐Ÿณ
Compatibility โœ… โœ… ๐Ÿงช
Phase Training Validation Inference
Supported โœ… โœ… โœ…
Device CUDA CPU MPS
PyTorch v1.12 v2.3+ v1.12
ONNX โœ… โœ… -
TensorRT โœ… - -
OpenVINO - ๐Ÿงช โ”

Task

These are simple examples. For more customization details, please refer to Notebooks and lower-level modifications HOWTO.

Training

To train YOLO on your machine/dataset:

  1. Modify the configuration file yolo/config/dataset/**.yaml to point to your dataset.
  2. Run the training script:
python yolo/lazy.py task=train dataset=** use_wandb=True
python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c weight=False # or more args

Transfer Learning

To perform transfer learning with YOLOv9:

python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={dataset_config} device={cpu, mps, cuda}

Inference

To use a model for object detection, use:

python yolo/lazy.py # if cloned from GitHub
python yolo/lazy.py task=inference \ # default is inference
                    name=AnyNameYouWant \ # AnyNameYouWant
                    device=cpu \ # hardware cuda, cpu, mps
                    model=v9-s \ # model version: v9-c, m, s
                    task.nms.min_confidence=0.1 \ # nms config
                    task.fast_inference=onnx \ # onnx, trt, deploy
                    task.data.source=data/toy/images/train \ # file, dir, webcam
                    +quite=True \ # Quite Output
yolo task.data.source={Any Source} # if pip installed
yolo task=inference task.data.source={Any}

Validation

To validate model performance, or generate a json file in COCO format:

python yolo/lazy.py task=validation
python yolo/lazy.py task=validation dataset=toy

Contributing

Contributions to the YOLO project are welcome! See CONTRIBUTING for guidelines on how to contribute.

Star History

Star History Chart

Citations

@misc{wang2022yolov7,
      title={YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
      author={Chien-Yao Wang and Alexey Bochkovskiy and Hong-Yuan Mark Liao},
      year={2022},
      eprint={2207.02696},
      archivePrefix={arXiv},
      primaryClass={id='cs.CV' full_name='Computer Vision and Pattern Recognition' is_active=True alt_name=None in_archive='cs' is_general=False description='Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.'}
}
@misc{wang2024yolov9,
      title={YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information},
      author={Chien-Yao Wang and I-Hau Yeh and Hong-Yuan Mark Liao},
      year={2024},
      eprint={2402.13616},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}