Joint Entity and Relation Extraction with Set Prediction Networks
Source code for Joint Entity and Relation Extraction with Set Prediction Networks. We would appreciate it if you cite our paper as following:
@article{sui2020joint,
title={Joint Entity and Relation Extraction with Set Prediction Networks},
author={Sui, Dianbo and Chen, Yubo and Liu, Kang and Zhao, Jun and Zeng, Xiangrong and Liu, Shengping},
journal={arXiv preprint arXiv:2011.01675},
year={2020}
}
Model Training
Requirement:
Python: 3.7
PyTorch: >= 1.5.0
Transformers: 2.6.0
NYT Partial Match
- Note That: Replacing BERT_DIR in the command line with the actual directory of BERT-base-cased in your machine!!!
- 注意:需将命令行中的BERT_DIR替换为你机器中实际存储BERT的目录!!!
python -m main --bert_directory BERT_DIR --num_generated_triplets 15 --na_rel_coef 1 --max_grad_norm 1 --max_epoch 100 --max_span_length 10
NYT Exact Match
python -m main --bert_directory BERT_DIR --num_generated_triplets 15 --max_grad_norm 2.5 --na_rel_coef 0.25 --max_epoch 100 --max_span_length 10
or
python -m main --bert_directory BERT_DIR --num_generated_triplets 15 --max_grad_norm 1 --na_rel_coef 0.5 --max_epoch 100 --max_span_length 10
WebNLG Partial Match
python -m main --bert_directory BERT_DIR --batch_size 4 --num_generated_triplets 10 --na_rel_coef 0.25 --max_grad_norm 20 --max_epoch 100 --encoder_lr 0.00002 --decoder_lr 0.00005 --num_decoder_layers 4 --max_span_length 10 --weight_decay 0.000001 --lr_decay 0.02
Trained Model Parameters
Model parameters can be download in Baidu Pan (key: SetP)